
The Web Browser as Distributed Application Server: Towards
Decentralized Web Applications in the Edge

Kristof Jannes
imec-DistriNet
KU Leuven

kristof.jannes@cs.kuleuven.be

Bert Lagaisse
imec-DistriNet
KU Leuven

bert.lagaisse@cs.kuleuven.be

Wouter Joosen
imec-DistriNet
KU Leuven

wouter.joosen@cs.kuleuven.be

Abstract
Web applications are evolving to a decentralized, client-centric
architecture in which browsers need to be able to put the user
back in control of their personal data, need to be able to operate in
disconnected settings, and need to offload the web server as much
as possible.

This paper presents a set of key application scenarios and trends
in different business domains that require a more client-centric and
data-centric web middleware for decentralized, peer-to-peer web
applications in the edge. We define a set of key requirements for
data operations in such middleware and motivate them with the
application cases.

This paper further discusses the current state and limitations
of the browser as a platform for peer-to-peer communication and
complex decentralized applications with shared data. We conclude
with a performance assessment of our first prototype middleware
for client-centric and data-centric peer-to-peer web applications.

CCS Concepts •Computer systems organization→ Peer-to-
peer architectures; • Information systems→Web applications.

Keywords Client-centric webmiddleware, Decentralizedweb app-
lications
ACM Reference Format:
Kristof Jannes, Bert Lagaisse, and Wouter Joosen. 2019. The Web Browser as
Distributed Application Server: Towards Decentralized Web Applications
in the Edge. In 2nd International Workshop on Edge Systems, Analytics and
Networking (EdgeSys ’19), March 25, 2019, Dresden, Germany. ACM, New
York, NY, USA, 5 pages. https://doi.org/10.1145/3301418.3313938

1 Introduction
The Web has changed a lot since the original proposal for the
World Wide Web thirty years ago. Static web pages using basic
HTML evolved to become dynamic, server-side applications and
later have become fully functional single-page web applications
using JavaScript on the client-side. This enables the offloading of vi-
sualization logic and functionality from the server to the client, and
thus freeing up resources on the server, enabling better scalability.
Moreover, in today’s always-connected environment, tunnels and
airplanes should not discontinue fluent operations of web applica-
tions. Browsers and client-side web technology also offer more and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or
a fee. Request permissions from permissions@acm.org.
EdgeSys ’19, March 25, 2019, Dresden, Germany
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6275-7/19/03. . . $15.00
https://doi.org/10.1145/3301418.3313938

more capabilities to enable fully client-side web applications that
can operate in a disconnected setting (e.g. extended local storage
with query technology and service workers that support offline
operation). As such, web applications are replacing native programs
in many places.

However, the basic paradigm of the web and the browser is still
server-centric. The key data is stored, served, processed and an-
alyzed on central servers owned by the service provider. As said
by Tim Berners-Lee, the founder of the web: over the years, we’ve
lost control of our personal data [2]. To regain control, the web
should evolve to a decentralized network, where data can be stored
in places under control of the user. To come to a fully decentral-
ized web, browsers need to shift from the client-server paradigm
to a peer-to-peer (P2P) approach. This kind of decentralized web
application architecture should be supported by both the browser
and the client-side web middleware. This client-side platform will
be responsible to let the different clients connect to a decentralized
fabric of clients in the edge. Moreover, each client-side node will be
responsible for key middleware services that were once the roots of
the first application servers in the ’90s: 1) coordinating consistency
over distributed storage, 2) executing data-centric operations and
key business logic, and 3) controlling data access.

The contribution of this paper is a case-study driven motivation
and analysis of a more client-centric and data-centric web middle-
ware for decentralized web applications in the edge, in addition to
the already existing client-server architectures. Based on the three-
fold motivation of disconnected situations, offloading web servers
and regaining control of personal data, we put forward the need
for more advanced client-centric and data-centric web middleware
that supports decentralized web applications in a P2P network of
browsers. We focus on data-centric operations such as data storage,
data replication and synchronization, well-scoped data sharing and
access control, as well as secure and privacy-aware data queries
and data analysis.

This paper is structured as follows. In Section 2 we first present
a set of key application scenarios and trends that motivate our need
for decentralized client-centric web applications. We then define a
set of key requirements that must be supported by the underpin-
ning data-centric web middleware. Section 3 presents an analysis of
the current state of web browsers to assess to which extent such de-
centralized web applications can already be supported. In Section 4
we assess a first prototype of our middleware that already supports
P2P data synchronization to reduce the load on web servers and
operate in disconnected settings. We conclude in Section 6.

2 Motivation and Requirements
Even now that web applications are becoming fully functional and
stand-alone programs, they still need a central server to store and
synchronize the user data. This is needed because data is often

7

https://doi.org/10.1145/3301418.3313938
https://doi.org/10.1145/3301418.3313938

EdgeSys ’19, March 25, 2019, Dresden, Germany Kristof Jannes, Bert Lagaisse, and Wouter Joosen

shared by multiple people, and the latest version needs to be avail-
able to all of them. Even applications that only contain data of a
single user, often need to synchronize this between all the devices
of that user (e.g. laptop, tablet, phone). Storing the data on a central
server has several disadvantages. Web applications always need
a working internet connection to synchronize the data and share
their work with others. For data that is shared across many users,
the web server needs enough capacity to ensure prompt synchro-
nization, especially for web applications that allow users to work
together interactively. The data on the central server is under con-
trol of the provider of the web application. The provider might
make security mistakes that leak your data to the internet. Even
when the data is secure, the provider has access to it and can look
into it at any time.

Motivating scenarios. Many web applications can benefit from
a more decentralized and P2P approach. Multi-player games in
particularly benefit from the decreased latency by communicating
directly between browsers. Next to low-latency benefits for games,
many enterprise-level applications can benefit from the high avail-
ability and confidentiality that a decentralized web application can
bring. This section will present three such enterprise level applica-
tions as motivating examples for the use of a more decentralized
web, next to the current centralized approach. The examples are
based on real-life case studies from our applied research projects
with industry.

The first application, eWhiteboard, is a shared whiteboard which
can be used by participants at a business meeting. All people are
in the same room, using their laptop or tablets to access a web
application where they can draw and write ideas during their meet-
ing. Everyone is immediately able to see what others draw and can
actively participate in the discussion. Since they are all in one room,
there is no reason to use a central server which is under control of
the company that created the whiteboard web application. Instead,
all communication can happen P2P between the users’ browsers
over a local ad-hoc network. This even makes it possible to hold
such a meeting in cars, trains or even airplanes, since there is no
reliance anymore on the internet. The second benefit is that the
ideas, which might be of strategical importance to the company,
never leak to third parties who are not present at the meeting. All
data is stored locally in the browser and is only synchronized be-
tween the participants of the meeting. Even the company of the
whiteboard application cannot access this data. However, each par-
ticipant might want to share the data with colleagues and store it
to a company server.

The second company is eDesigners. It provides a multi-tenant
web application for graphical templates. Templates can be edited
by several users at the same time, even when offline. The base
of the templates is provided by eDesigners itself, while the cus-
tomer companies make their own customization’s on top of it. The
base template of eDesigners is accessible to all paying users. The
customization’s that a company made on top of it can only be ac-
cessed by employees of the same company or department within
the company.

The third example is about eWorkforce, a company that provides
technicians to install network devices for different telecom oper-
ators at their customers’ premises. The company has two kinds
of employees: the help desk operators in the office that accept
customer calls and plan technical interventions by technicians;

and technicians on the road who go from customer to customer
to install or repair network infrastructure. The technicians need
to check their work plan, enter used materials and indicate the
status of a particular intervention. Since they are always on the
road, sometimes working in cellars, an internet connection is not
always available. Yet, they must still be able to complete their jobs
and synchronize their devices with the back-office once they are
back online. When multiple technicians are working on the same
job, they can synchronize their devices with each other. This way,
no used material is accidentally entered twice, or worse, forgotten
because one employee thought another had already entered it. The
operators in the back-office normally have an internet connection
to the main server. In case of network disruptions, a large company
cannot tolerate to shut down business for several hours. Instead,
they should be able to continue working as usual. To prevent con-
flicts between the operators, e.g. assigning the same technician
to different jobs at the same time, they can still synchronize their
updates to each other. The LAN network in the office will most
likely be intact. They can keep up-to-date with the latest changes
using P2P communication between the operators’ devices.

Requirements analysis. In this paragraph, we present a set of
key requirements and features for decentralized, client-centric web
middleware. In our opinion, the basic architecture of such middle-
ware should be fully based on standard browser technology and
its JavaScript programming environment, and should not involve
any plugins or add-ins to the browser. The basic, core functional-
ity should focus on data-centric operations such as data storage,
data replication and synchronization, data sharing as well as secure
and privacy-aware data queries and data analysis. The middleware
should first be able to synchronize updates promptly to all other
clients and solving conflicts in the data automatically. These syn-
chronizations might happen via a central server in the back-office
or using direct browser-to-browser communication. The latter is
especially important for privacy-sensitive SaaS applications used
by any company that doesn’t always want its data on a third-party
server. At last, there should even be a possibility to connect multiple
clients over a local ad-hoc P2P network to share updates in offline
situations (e.g. airplanes). As such, we distinguish a first set of basic
requirements and features:

1. Operate continuously and without disruptions in a discon-
nected situation using local storage.

2. Support P2P synchronization between users when the server
is not available or overloaded. E.g. two designers working
on the same template in an airplane, both using their tablet,
should be able to synchronize.

3. Efficient data synchronization on mobile connections.
4. Synchronization of data items with interactive timing con-

straints. E.g. when a first user edits the color of an item on the
whiteboard, another user sitting next to him should receive
this update promptly within acceptable timing according to
usability guidelines [8].

State of the art frameworks have already support for these basic
requirements. However, there are also a set of more advanced re-
quirements related to privacy-aware and secure data sharing and
data analysis:

1. User-centric access control with selective sharing and synchro-
nization of data items. Each user should be able to determine

8

The Web Browser as Distributed Application Server EdgeSys ’19, March 25, 2019, Dresden, Germany

who can see what from the data the user owns. In case of the
eDesigners application for concurrent editing of templates,
a designer needs to be able to select which templates are
shared with who.

2. Support for distributed select queries. Users might request
specific data objects of another user using a typical select
query. When a certain user shares a drawing with another
user, the drawing’s document identifier appears in a list of
shared documents. The other user will query the drawing
document using the data object identifier from the first user.

3. Decentralized data processing and analysis. In case of the
collaborative whiteboard application, the developer of the
application, who is not controlling the data on an applica-
tion server, might want to know the following statistics: how
many drawings is the average user storing, how many draw-
ings does a user create per month, with how many people
does an average user collaborate on a drawing, how complex
and large is an average drawing, what kind of colors and
forms are mostly used in a drawing.

Based on these requirements we now analyze the current state
of the browser as a platform for decentralized, client-centric and
data-centric web applications.

3 State of the browser
This section will go into the technologies that are already present in
browsers to enable a decentralized, offline web. It first covers Web-
RTC, which enables browsers to directly communicate with each
other. Then we explain the JavaScript threading model based on the
event loop and the possibility to use multiple threads. We explain
how web applications can be used offline by using ServiceWorkers.
We end with the security model of the browser.

WebRTC. WebRTC (Web Real-Time Communications) [1] enables
direct, P2P communication between browsers. Communication
is coordinated by the exchange of control messages over a sepa-
rate signaling channel. This has serious consequences because two
browsers that want to connect to each other directly already need
an indirect connection to each other. The most user-friendly option
is to use a central server for this. The browsers can send the control
messages to each other using normal HTTP requests orWebSockets
to the server, which will forward the message to the right browser.
Once the WebRTC connection is set up, the signaling channel is no
longer needed, and the browsers can communicate with each other
directly. The requirement of having a central server for setting
up the connection is a problem in an offline situation, where you
want to set up a local P2P network. As a solution, it is possible to
do the signaling manually. One can use QR-codes to encode the
control messages. When initiating a P2P connection, you let the
web application generate a new QR-code which is shown on the
screen. The other party that you want to connect to scans this code
with their device. The web application on this device generates a
QR-code as a response. You scan the QR-code and the connection
can be established. You can now repeat the process for all devices
you want to connect with. An existing WebRTC connection can
also be used as a signaling channel. So once you connect to a device,
you can also set up a P2P connection to its peers.

Next to the need for a signaling channel, Network Address Trans-
lation (NAT) and firewalls pose additional problems. NAT is used
to overcome the shortage of IPv4 addresses. NAT creates a local

network where each client on that network has its own local IP
address. The NAT-box has a public IP address and forwards all
requests coming from a client to the internet using its public IP
address and remembers which client made the request. This means
that the IP address that a client knows is not its public IP address,
but only a local IP behind the NAT-box. Browsers using WebRTC
on a different network cannot connect to you using your local IP
address. Session Traversal Utilities for NAT (STUN) is used by a
browser to discover its public IP address. Again, a central server
is needed (STUN-server) to set up a P2P connection. Firewalls can
make it impossible to set up a real P2P connection, essentially be-
cause the browser needs to accept connections from outside on
some random port, which is not always permitted. The solution for
this is using Traversal Using Relays around NAT (TURN), which
will essentially put a relay-server in between the P2P communi-
cation. This is not a real browser-to-browser communication and
therefore has almost none of its advantages. It is provided as an
option to make WebRTC connections more reliable. As long as you
have access to a TURN-server you can set up aWebRTC connection,
possibly via a TURN-relay.

The JavaScript event loop. JavaScript was once made for building
interactive and more complex user interfaces than were possible
using plain HTML. It uses only a single thread with one event
loop and a task queue to hold tasks, which get executed one by
one. That single main thread is responsible for everything the web
application needs to do: drawing the page on the screen, executing
the JavaScript code of the web application and background data-
synchronization to peers. With the evolution of JavaScript, new
features are added and multiple queues exist for the event loop to
choose from with different priorities. One such queue is the mi-
crotask queue, which handles Promises. A Promise is a JavaScript
primitive to allow you to write clear concurrent code, without rely-
ing on callbacks. The browser will always first empty the microtask
queue, and only then return working on the main task queue. This
can delay the execution of tasks for a long time when too many
Promises are generated, especially when those Promises also create
new Promises. This leads to temporary starvation of the task queue.

WebWorkers. WebWorkers [6] are separate threads in the browser
with their own event loop. They can therefore run in parallel with
the main thread. The main thread is still the only thread that can
update the user interface. This allows to do heavy computations
on a separate worker thread, so the user interface stays respon-
sive, which leads to a better user experience. The only possible
communication between the main thread and a worker is using
message passing. There is no shared memory between the two
threads. While workers also run JavaScript, not all APIs are avail-
able. For example, the WebRTC API is missing in workers and can
only be used from the main thread. This means if one wants to
do P2P synchronization with other browsers, this synchronization
needs to happen on the main thread. One can offload the main
thread by only sending and receiving the messages on the main
thread and offloading the processing of it to one or more worker
threads. But still, some part of the main thread will be consumed.
There are plans to allow WebRTC in workers in the next version of
WebRTC [3].

ServiceWorkers. ServiceWorkers [9] run in the background of the
browser and can be used to provide rich offline experiences, periodic

9

EdgeSys ’19, March 25, 2019, Dresden, Germany Kristof Jannes, Bert Lagaisse, and Wouter Joosen

background sync and push notifications. A ServiceWorker acts as a
proxy and can intercept requests. One use case is to save requested
pages in the cache. Later on, when the ServiceWorker detects that
there is no internet connection, it can serve those cached pages
to the user. This allows users to open a page even when they are
offline. They can then use WebRTC to interact with other browsers
and share data, without the need for a central server (within the
boundaries of the current WebRTC implementation).

Security model of the browser. The current security policy in the
browser is based on the Same-Origin Policy. This allows all scripts
from the same origin (combination of scheme, hostname and port)
to access the same data. Scripts coming from another origin have
their own data storage and have no access to those of other origins.
This security model works fine when handling local, personal data.
However, if we want to enable a more decentralized, client-centric
web with shared data, where each client has their own local copy,
more security measures are needed.

First of all, data can be shared between multiple origins: for ex-
ample between a data storage provider and a service provider. In the
current client-server model, such information would be requested
from the server by the service provider and be authenticated via e.g.
OAuth [5]. In the decentralized approach, that information might
already be present in the browser but stored under a different ori-
gin. Current implementations of the browser allow communication
between scripts of multiple origins via message passing. This can
be used by the service provider to locally (in the browser) request
the required data from the storage provider, which can provide the
correct information from the local copy, or download it from an-
other storage location (be it another browser or a server). Important
here is that the storage provider should have a way to verify the
request from the service provider, even in a disconnected situation.

Next to data sharing between different origins on the same de-
vice, data can be shared between multiple devices, possibly owned
by different users via WebRTC. Again the same story applies, in-
dependently from a central component, there should be a way to
verify if the request should be fulfilled or denied. A possible so-
lution would be to use capabilities, which are signed claims that
can be verified without contacting the authority that created it
using cryptographic primitives. The browser-to-browser communi-
cation itself using WebRTC is encrypted by default. In fact, using it
without encryption is not possible from within the browser.

4 Preliminary evaluation
In this first preliminary evaluation, we want to assess the impact
on the performance of shifting from a server-centric approach to a
client-centric approach. A server-centric approach hosts the main
copy of the data on the server and all clients synchronize with this
main copy. The threading model of the server-side technology is
optimized to handle many concurrent updates with the different
clients. So is the database behind it. A client-centric P2P approach
however needs to handle the many concurrent updates from the
other clients using the threading model and P2P communication
model of the browser as discussed in Section 3. In this section, we
assess if the decentralized client-centric P2P approach can offload
the server and achieve faster synchronization for various scales of
data sets and users.

We have started implementing a middleware which uses state-
based CRDTs [10] for the synchronization and conflict resolution.

Updates are synchronized by computing deltas dynamically, as is
also the case in Legion [12]. The middleware can use WebSockets
to synchronize updates between clients via a central server. This is
the baseline used by most modern web applications today. It can
also be used in a P2P setting using WebRTC to synchronize updates
directly from browser-to-browser. A WebSocket connection to the
server is used as a signaling layer to set up the WebRTC connection.

We have implemented the shared whiteboard example using a
first prototype of our middleware and tested the performance in
both the classical client-server setting, as well as the P2P setting.
We decided to use our own middleware to be able to change config-
urations and collect extensive metrics. In future work, we want to
extend that middleware with extensive access control, distributed
queries and distributed data analysis, to support our vision of a
decentralized, client-centric web.

Benchmark setup. The servers (including signaling and TURN)
and browser clients are deployed as separate Docker containers
on several VMs in our OpenStack private cloud. A VM has 8 CPUs
and 16 GB of RAM and can hold up to 6 client containers. A client
container contains a Chromium browser which loads the web ap-
plication from a web server. The Linux traffic tool (tc) is used to
artificially increase the latency between the containers to an aver-
age of 100 ms. Which resembles the latency of a bad 4G network.

The benchmark is executed with 10 and 30 clients. Each client
makes one update per second to the shared data set. The shared
data consists of 1000 objects on a canvas, which have properties
like the position, size and color of the object. A single run of a
benchmark provides us with 10 minutes of data. The 10-minute in-
terval is preceded by a 1-minute warm-up period. Each benchmark
is repeated 10 times.

Baseline: client-server. The baseline for comparing the P2P per-
formance is an application that only synchronizes data via the
server. We’ve implemented the shared whiteboard in a classical
client-server architecture. The first two columns of Table 1 show
the synchronization times and network usage. The synchronization
time is the time it takes for all clients to receive an update made
by one client. We show both the median (50th percentile) as well
as the 99th percentile of these synchronization times. Not only the
average client should have a great performance, but most of the
clients [4].

Peer-to-peer setup. Now we disable all synchronization via the
server, only P2P synchronization is allowed. The data synchroniza-
tion server now acts only as a signaling layer to set upWebRTC con-
nections between each client. The P2P-network is a fully-connected

Table 1. Statistics for all benchmarks for the client-server and peer-
to-peer situations. Numbers are the average over 10 tests of each 10
minutes with respectively 6000 and 18000 updates made per test.

client-server peer-to-peer
clients 10 30 10 30

Sync. time [s] 50% 1.9 2.3 1.1 1.6
99% 2.3 3.2 1.8 2.3

Bandwidth [Mbit/s] server 1.5 8.9 - -
client 0.1 0.3 0.3 1.2

10

The Web Browser as Distributed Application Server EdgeSys ’19, March 25, 2019, Dresden, Germany

network where each peer is connected to all other peers. The results
are in the last two columns of Table 1. Going from client-server
to P2P communication improved the mean synchronization time
with about 0.7 seconds. The network usage of each client raised
to 1.2 Mbit/s in the large scale scenario with 30 clients, which is
still far away from the maximum bandwidth available today. In
comparison, the average download-bandwidth on a mobile network
in the US is 27 Mbit/s [11].

Limitations of the P2P solution. While the previous paragraph
talked about a full P2P solution, there were still two central servers
needed to set up the connection. The actual data synchronization
is indeed P2P and messages are sent from one browser directly to
the other. But to initiate the connection, there is a signaling layer
needed. This is implemented as a central server which is connected
to the web applications via a WebSocket. The clients all have a
unique ID and can request the list of other clients from the signaling
server. The signaling server acts as a relay for control messages.
Clients can send WebRTC control messages to the signaling server,
combined with the ID of the destination. The signaling server will
forward it to the correct client. Next to the central signaling server,
a STUN server is needed for clients to discover their real IP address.
The signaling server could be replaced by a manual procedure using
e.g. QR codes. The STUN server can be removed when all clients
are on the same network. This way, even during the setup phase, no
central servers are needed.We used the signaling server to automate
the tests, and STUN was needed because Docker containers have
their own local network on each VM.

Conclusion. Our preliminary evaluation shows that browsers are
ready to let the web evolve to use a decentralized, client-centric
approach. P2P communication increases the interactivity of updates
while the network usage stays low enough to be able to run on a
mobile network. The fully connected P2P network works great for
the scale of the benchmarks done already, but to scale to hundreds
or thousands of concurrent clients, more structured P2P-networks
will be needed.

5 Related work
The current client-centric web middleware platforms can be di-
vided into three categories: 1) GUI-focused JavaScript frameworks
(e.g. React, Angular), that only focus on local data binding of data
with GUI elements, 2) libraries that focus on client-server REST
communication (e.g. JQuery) and 3) data-synchronization focused
frameworks (e.g. PouchDB, Yjs, Legion).

Some of these data-centric frameworks support P2P synchroniza-
tion when a central signaling server is available. These synchroniza-
tion frameworks help to offload the server and allow disconnected
operation. However, prompt synchronization is only supported in
small scale scenarios, i.e. tens of users. PouchDB is a JavaScript li-
brary to replicate data (as JSON-documents) with a CouchDB server.
It doesn’t support automatic fine-grained conflict resolution or P2P
synchronization. Yjs [7] is a framework for synchronizing different
data structures (maps, arrays) using operation-based CRDTs [10].
It supports WebRTC as an adapter to synchronize the changes di-
rectly to other clients. Legion [12] is a research prototype for P2P
synchronization between web applications.

While the first four basic requirements we defined in Section 2
are currently supported, at least for small scale scenario’s, the last

three are still a challenge to achieve truly decentralized, client-
centric web applications. None of these frameworks provide exten-
sive access control that help ensure the confidentiality of the data.
They also don’t provide any help with complex queries that run
over multiple browsers.

6 Conclusion and future work
This paper defined a set of key requirements for data operations in
a middleware for a decentralized, client-centric web architecture.
The move to such decentralized web applications in the edge is
needed to allow operation in disconnected situations, offload web
servers and regain control of your personal data.

We assessed the current state of the browser and its limitations.
WebRTC needs a signaling layer to connect to other browsers and a
STUN server is required to circumvent NAT. The event-loop driven
threading model of JavaScript is not ideal for large scale client-
side application servers. However, WebWorkers allow multiple
execution lines. Indeed, our preliminary evaluation, using WebRTC
andWebWorkers showed that interactive, P2P data synchronization
is suitable in a browser. Synchronization times were even lower
than the client-server variant.

More research is needed to scale up to hundreds or thousands of
users interactively accessing the same data set. Next to the scalabil-
ity, there are still 3 requirements missing before fully decentralized
web applications can exist: 1) user-centric access control with se-
lective sharing and synchronization of data items, 2) support for
distributed select queries, and 3) decentralized data processing and
analysis.

References
[1] Bernard Aboba. 2018. WebRTC Next Version Use Cases. Working Draft. W3C.

https://www.w3.org/TR/2018/WD-webrtc-nv-use-cases-20181211/
[2] Tim Berners-Lee. 2017. Three challenges for the Web, according to its inventor.

https://webfoundation.org/2017/03/web-turns-28-letter/
[3] Jan-Ivar Bruaroey, Daniel Burnett, Taylor Brandstetter, Cullen Jennings, Anant

Narayanan, Adam Bergkvist, and Bernard Aboba. 2018. WebRTC 1.0: Real-time
Communication Between Browsers. Candidate Recommendation. W3C. https:
//www.w3.org/TR/2018/CR-webrtc-20180927/

[4] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall,
and Werner Vogels. 2007. Dynamo: amazon’s highly available key-value store.
In ACM SIGOPS operating systems review, Vol. 41(6). ACM, ACM, New York, NY,
USA, 205–220. https://doi.org/10.1145/1294261.1294281

[5] D. Hardt. 2012. The OAuth 2.0 Authorization Framework. RFC 6749. https:
//www.rfc-editor.org/rfc/rfc6749.txt

[6] Ian Hickson. 2015. Web Workers. Working Draft. W3C. http://www.w3.org/TR/
2015/WD-workers-20150924/

[7] Petru Nicolaescu, Kevin Jahns, Michael Derntl, and Ralf Klamma. 2015. Yjs: A
Framework for Near Real-Time P2P Shared Editing on Arbitrary Data Types.
In Engineering the Web in the Big Data Era. Springer International Publishing,
Cham, 675–678.

[8] Jakob Nielsen. 1993. Usability Engineering. Nielsen Norman Group. https:
//www.nngroup.com/books/usability-engineering/

[9] Alex Russell, Marijn Kruisselbrink, Jungkee Song, and Jake Archibald. 2017.
Service Workers 1. Working Draft. W3C. https://www.w3.org/TR/2017/
WD-service-workers-1-20171102/

[10] Marc Shapiro, Nuno Perguiça, Carlos Baquero, and Marek Zawirski. 2011.
Conflict-Free Replicated Data Types. In SSS 2011 - 13th International Symposium
Stabilization, Safety, and Security of Distributed Systems (Lecture Notes in Com-
puter Science), Xavier Défago, Franck Petit, and Vincent Villain (Eds.), Vol. 6976.
Springer Berlin Heidelberg, Berlin, Heidelberg, 386–400.

[11] Speedtest.net. 2018. 2018 Speedtest U.S. Mobile Performance Report by Ookla.
http://www.speedtest.net/reports/united-states/2018/Mobile/.

[12] Albert van der Linde, Pedro Fouto, João Leitão, Nuno Preguiça, Santiago
Castiñeira, and Annette Bieniusa. 2017. Legion: Enriching Internet Services
with Peer-to-Peer Interactions. In Proceedings of the 26th International Conference
on World Wide Web (WWW ’17). International World Wide Web Conferences
Steering Committee, Republic and Canton of Geneva, Switzerland, 283–292.
https://doi.org/10.1145/3038912.3052673

11

https://www.w3.org/TR/2018/WD-webrtc-nv-use-cases-20181211/
https://webfoundation.org/2017/03/web-turns-28-letter/
https://www.w3.org/TR/2018/CR-webrtc-20180927/
https://www.w3.org/TR/2018/CR-webrtc-20180927/
https://doi.org/10.1145/1294261.1294281
https://www.rfc-editor.org/rfc/rfc6749.txt
https://www.rfc-editor.org/rfc/rfc6749.txt
http://www.w3.org/TR/2015/WD-workers-20150924/
http://www.w3.org/TR/2015/WD-workers-20150924/
https://www.nngroup.com/books/usability-engineering/
https://www.nngroup.com/books/usability-engineering/
https://www.w3.org/TR/2017/WD-service-workers-1-20171102/
https://www.w3.org/TR/2017/WD-service-workers-1-20171102/
http://www.speedtest.net/reports/united-states/2018/Mobile/
https://doi.org/10.1145/3038912.3052673

	Abstract
	1 Introduction
	2 Motivation and Requirements
	3 State of the browser
	4 Preliminary evaluation
	5 Related work
	6 Conclusion and future work
	References

