Seamless Synchronization for Collaborative Web
Services

Kristof Jannes, Bert Lagaisse, and Wouter Joosen

imec-DistriNet, KU Leuven, Belgium
{firstname.lastname}@cs.kuleuven.be

Abstract. Collaborative web services, which allow multiple people to
work together on the same data, are becoming increasingly popular.
However, current state-of-the-art frameworks for interactive client-side
replication cannot handle network disruptions well, or suffer from large
metadata overhead when clients are short-lived. This demonstration will
show OWebSync, a generic web middleware for data synchronization
in browser-based applications and interactive groupware. It offers a fine-
grained data synchronization model, using state-based Conflict-free Repli-
cated Data Types, and leverages Merkle-trees in the data model for ef-
ficient synchronization. We provide an interactive demonstration of a
drawing application that workshop attendees can experiment with. We
will also demonstrate the robustness in disconnected and offline settings.

Keywords: CRDTSs - Online collaboration - Eventual Consistency.

1 Introduction and motivation

The use of online software services to collaborate remotely has been increasing
in the last decade, especially in the last year due to the COVID-19 pandemic.
Collaborative groupware applications, such as Google Docs or Microsoft White-
board, allow people to work together on the same document, without them being
present in the same geographic location. People can work from anywhere they
want, even in unstable network conditions, or while being offline. When a connec-
tion is available, changes should be replicated to all other client replicas within
1-2 seconds to keep the user experience interactive. Five seconds is the absolute
maximum before users are becoming annoyed [9]. When offline, the user should
be able to work further on the local copy of the data. Once the user comes back
online, any changes should be replicated as fast as possible. This is especially
important in unstable network conditions, where there is a limited time frame
available to replicate all updates. The requirement for offline support implies
the evolution to a more client-centric architecture, in which the different clients
all become the authoritative data replicas [2]. This is in contrast to the classical
client-server model, where the server is responsible for both data and business
logic, typically organized in a data-tier and a business-tier. While this gives rea-
sonable good performance when online, it comes at a cost of higher latency for
clients located geographically far from the main server.

The final authenticated version is available online at https://doi.org/10.1007/978-3-031-14135-5_27.


https://doi.org/10.1007/978-3-031-14135-5_27

The most used client-server technology for collaborative groupware is Oper-
ational Transformation (OT) [1]. OT is used in Google Docs. It uses a central
server that transforms the conflicting operations for each replica to allow them
to be applied in a different order on the other replicas. However, these trans-
formations are rather complex and resource-intensive on the server, limiting the
scalability of this technique. Moreover, OT only works for short-time disconnec-
tions and cannot be used when the client is offline for a longer time.

Several client-centric frameworks exist for collaborative web services. They
rely on Conflict-free Replicated Data Types (CRDTSs) [10] to automatically re-
solve any conflicts that would arise from multiple people editing the same data.
There are several kinds of CRDTs. Operation-based CRDTs (CmRDTs) must
still send all operations between the replicas using a reliable, exactly-once, mes-
sage channel, similar to OT. However, no central component to transform these
operations is required, as all operations are commutative. CmRDTs are used in
Yjs [8] and Automerge [4,5]. State-based CRDTs (CvRDTSs) do not use opera-
tions, but instead, they send the full state to other replicas, who will merge that
state with their local state. CvRDTs are not suitable for client-centric interac-
tive applications, as the full state is too expensive to send every time. It can
however be used to replicate data between backend servers. Delta-state-based
CRDTs [7] use vector clocks to calculate which part of the data needs to be sent
to other replicas. They require much less of the message channel compared to
operation-based CRDTSs, however, the total size of the metadata will grow with
every client that makes an edit. Especially in a web-based environment, where
clients are often short-lived, the metadata will become larger over time, reducing
the interactive performance. Delta-state-based CRDTSs are used in Legion [6].

This demonstration shows OWebSync! [3], a generic web middleware for data
synchronization in the context of web-based services and interactive groupware.
OWebSync leverages nested state-based CRDTs and Merkle-trees to efficiently
replicate changes. Compared to state-of-the-art frameworks, OWebSync offers:

— continuous and interactive synchronization of online web clients,

— prompt resynchronization of offline clients when they come back online,

— no meta-data explosion.
Application developers can leverage OWebSync to create collaborative services
that are resilient against network failures. OWebSync offers a flexible data model,
with fine-grained synchronization and automatic conflict resolution. Online web
clients achieve interactive synchronization, making it possible for several peo-
ple to work fluently on the same document. However, if no internet connection
is available, such as in a tunnel or an airplane, clients can continue on their
local copy. OWebSync is especially robust against these offline periods, and is
able to quickly replicate all missed updates, and achieve the same interactive
performance as before within seconds. This robustness also makes OWebSync
interesting for the field-services industry, where technicians are often on the
road going from customer to customer for technical interventions. A stable in-
ternet connection is not always available on their location, however, writing off all

! https://distrinet.cs.kuleuven.be/software/owebsync/


https://distrinet.cs.kuleuven.be/software/owebsync/

used materials is important for correct billing and inventory. Using OWebSync,
those offline reports will be synchronized quickly when an internet connection is
available again, even when multiple technicians are working on the same job.

2 Overview of the OWebSync framework

OWebSync is a JavaScript framework for application developers to synchronize
data between browser-clients. OWebSync provides Strong Eventual Consistency
out-of-the-box, without letting the developer worry about it. Conflicts are solved
automatically by the framework.

Data model. OWebSync can be used to replicate JSON data structures con-
taining strings, numbers, booleans, and objects; the latter can include any of
those recursively. OWebSync uses this tree-structure of the JSON data to create
a Merkle-tree internally, which is used for efficient synchronization. State-based
CRDTs are used to resolve conflicts under-the-hood. Application developers do
not need to concern themselves with these internals. However, they need to be
aware that data is only eventually consistent. Since we are using state-based
CRDTs, there is little required from the message channel, compared to existing
operation-based approaches. There is also no need to keep track of clients or
client-specific metadata such as vector clocks.

Architecture and API. The deployment architecture of OWebSync is depicted in
Fig. 1. OWebSync provides a JavaScript API for web applications to read and
modify the tree-structured data. All data is stored locally in the browser using
the IndexedDB key-value store, which is built-in in every modern browser. Data
is replicated to a server running on NodeJS using a direct WebSocket connection.
This WebSocket connection and the server are also used as a signaling channel to
set up peer-to-peer WebRTC connections between the other browser instances.
Once a WebRTC connection is initialized, the different OWebSync replicas can
replicate the changes directly with each other. This reduces the latency to repli-
cate changes to other browser instances, and also improves the scalability, as the
central server is no longer a bottleneck. Fig. 2 shows an example code snippet
using the public API of OWebSync. It connects to the WebSocket endpoint of
the NodeJS server. Developers can then use the CRUD operations get, set and
del, and the path in the tree, to retrieve and modify data. The full data is
immediately stored locally, and in the background OWebSync will replicate the
changes to the server and to any other connected browser clients.

Internal synchronization protocol. Internally, the synchronization protocol al-
ways runs directly between two different replicas, either browser-to-browser or
browser-to-server. The protocol uses the Merkle-tree to find out which part of
the tree needs to be sent to the other replica. If the local hash does not match
the hash on the remote replica, then the corresponding state-based CRDT will
be used to merge the remote state with the local state. We refer to Jannes et
al. [3] for a detailed specification of this CRDT merge operation.



Browser Web™RTC <script src="owebsync-browser.js"></script>
- - <script>
Application Server OWebSync ("ws://localhost:8080") .then(
WS async (owebsync) => {
@ OWebSync await owebsync.set("objll.color", "#f00");
}
S LevelDB )
</script>
Fig. 1. Deployment architecture Fig. 2. Public API example

3 Interactive Demonstration

We demonstrate OWebSync with an interactive web-based drawing application
for all the demo attendees world-wide. The drawing can be edited by multiple
users simultaneously, and any conflicts that might arise will be solved automat-
ically by the underlying CRDTs. We will demonstrates the interactive latency
with worldwide collaboration when everyone is online. OWebSync is especially
robust against network failures, and we demonstrate this with two scenario’s.
First, the server is stopped, yet, all browser clients can continue to work together
by using the peer-to-peer network between them. Second, one browser instance
loses its internet connection temporarily. We also demonstrate that both the
online clients, as well as the offline client, can continue to work on their copies
of the data. When the internet connection is restored, we demonstrate that the
changes are merged quickly, and interactive performance is resumed.

References

1. Ellis, C.A., Gibbs, S.J.: Concurrency control in groupware systems. SIGMOD Rec.
(1989)

2. Jannes, K., Lagaisse, B., Joosen, W.: The web browser as distributed application
server: Towards decentralized web applications in the edge. In: EdgeSys 19 (2019)

3. Jannes, K., Lagaisse, B., Joosen, W.: Owebsync: Seamless synchronization of dis-
tributed web clients. IEEE Transactions on Parallel and Distributed Systems
(2021)

4. Kleppmann, M., Beresford, A.R.: A conflict-free replicated json datatype. IEEE
Transactions on Parallel and Distributed Systems (2017)

5. Kleppmann, M., Beresford, A.R.: Automerge: Real-time data sync between edge
devices. In: MobiUK’18 (2018)

6. van der Linde, A., Fouto, P., Leitdo, J.a., Preguica, N., Castifieira, S., Bieniusa,
A.: Legion: Enriching internet services with peer-to-peer interactions. In: WWW
17 (2017)

7. van der Linde, A., Leitao, J.a., Preguiga, N.: A-crdts: Making §-crdts delta-based.
In: PaPoC ’16 (2016)

8. Nicolaescu, P., Jahns, K., Derntl, M., Klamma, R.: Near real-time peer-to-peer
shared editing on extensible data types. In: GROUP ’16 (2016)

9. Nielsen, J.: Usability Engineering. Nielsen Norman Group (1993)

10. Shapiro, M., Perguiga, N., Baquero, C., Zawirski, M.: Conflict-free replicated data
types. In: SSS 2011 (2011)



	Seamless Synchronization for Collaborative Web Services

