SCEW: Programmable BFT-Consensus with Smart
Contracts for Client-Centric P2P Web Applications

Martijn Sauwens, Kristof Jannes, Bert Lagaisse, Wouter Joosen
imec-Distrinet, KU Leuven

Abstract

Collaborative web applications are becoming increasingly
client-centric, with technologies such as WebRTC, WebWork-
ers and IndexedDB enabling a shift towards a decentralized
peer-to-peer (P2P) model. Contemporary systems such as
Automerge, Legion, OWebSync and Yjs provide fault tolerance
and consistency by using Conflict-free Replicated Data Types
for synchronization. These systems tolerate crash-faults, but
lack resilience against arbitrary faults and malicious users,
also known as Byzantine faults. Providing Byzantine fault
tolerance (BFT) in web apps is non-trivial. Web apps are
executed in web browsers on end user devices. The scarce
compute resources and the interactive nature of collabora-
tive web apps do require both a lightweight and low-latency
solution, while still providing the Byzantine fault tolerance
required by P2P systems to protect shared assets.

Our work aims to fill this gap by indroducing SCEW, a pro-
gramming framework for client-centric P2P web apps that
require BFT and interactive collaboration. SCEW achieves
this by combining state-based Convergent Replicated Data
Types (CvRDTs) and smart contracts. SCEW represents as-
sets shared by peers as CvRDTs with atomic register semanc-
tics, that provide BFT through the use of BFT-consensus
algorithms. SCEW employs smart contracts to define the life-
cycle of these shared assets, shielding the application and
it’s developers from the complexity of the CvRDT’s consen-
sus protocol. Experimental results indicate that applications
using SCEW can support P2P networks with 100 peers, even
when Byzantine faults are present.

CCS Concepts: « Security and privacy — Distributed
systems security; « Networks — Peer-to-peer protocols;
« Information systems — Web applications.

Keywords: Smart Contracts, Web applications, Peer-to-peer
protocols, Byzantine Fault Tolerance

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

PaPoC’21, April 26, 2021, Online, United Kingdom

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8338-7/21/04...$15.00
https://doi.org/10.1145/3447865.3457965

ACM Reference Format:

Martijn Sauwens, Kristof Jannes, Bert Lagaisse, Wouter Joosen. 2021.
SCEW: Programmable BFT-Consensus with Smart Contracts for
Client-Centric P2P Web Applications. In 8th Workshop on Principles
and Practice of Consistency for Distributed Data (PaPoC’21), April 26,
2021, Online, United Kingdom. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3447865.3457965

1 Introduction

Collaborative web applications are becoming increasingly
popular and versatile. Browser technologies such as Web-
RTC [5], WebWorkers [9] and IndexedDB [1] enable the im-
plementation of responsive and persistent peer-to-peer (P2P)
applications in the browser [11]. Existing frameworks for de-
veloping P2P web apps such as Automerge [14], Legion [31],
OWebSync [13] and Yjs [24, 25] provide crash-fault toler-
ance [28] by using CRDTs [29] and their P2P architecture.
However, none of these systems can tolerate arbitrary or
Byzantine faults. The source of these faults is diverse, ranging
from software bugs to colluding and malicious users [17, 28].
Dealing with Byzantine faults is more complex compared to
fail-stop crashes, requiring elaborate protection mechanisms.

Byzantine fault tolerance (BFT) is often required by P2P
applications that collectively manage shared assets with real
world value. Examples are integrated loyalty programs [12]
and sharing economy [8, 18]. Abuse of shared assets in these
applications may lead to real-world damage, either in the
form of financial loss or damage to the reputation of partici-
pating users. To protect the shared assets against Byzantine
faults, P2P applications use BFT-consensus protocols [6].
Consensus protocols ensure that state changes are only com-
mitted when a quorum of peers agree on the newly proposed
state. Designing and implementing BFT-consensus protocols
is sophisticated, requiring thorough testing and formal veri-
fication to prove safety. To capitalize on development costs,
it is useful to make consensus algorithms programmable. An
abstraction for programming BFT-consensus are smart con-
tracts [30]. Smart contracts specify how users interact with
shared assets and one another. Deploying the same contract
on all peers, in combination with BFT-consensus, ensures
that the protected shared state can only evolve according to
the specifications of the contract.

Client-centric P2P web apps execute exclusively in web
browsers of end-users. This environment is characterized by
a lack of compute resources, unreliable communication and
high churn rates. The interactive nature of collaborative P2P

https://doi.org/10.1145/3447865.3457965
https://doi.org/10.1145/3447865.3457965

PaPoC’21, April 26, 2021, Online, United Kingdom

web apps requires a solution to BFT-consensus that is not
only lightweight, but also provides low latencies, preferably
in the order of seconds [26]. To fulfil these requirements we
present the SCEW (Smart Contract Execution for the Web)
programming framework. This framework:

1. enables development of client-centric P2P web apps
that require BFT and interactive collaboration,

2. uses state-based CRDTs with atomic register semantics
for efficient synchronization and BFT,

3. and both defines and manages life-cycles of individual
assets with state machine based smart contracts.

Experimental results indicate that SCEW can support in-
teractive collaboration in client-centric P2P web apps that
require BFT to protect their users’ assets. SCEW can support
networks with up to 100 users, keeping latencies below 3.2
and 2 seconds for 99% of all transactions in scenarios with
and without Byzantine faults respectively.

The remainder of this text is structured as follows: Sec-
tion 2 elaborates on motivation and use cases. Section 3
provides the reader with additional background. Section 4
presents SCEW, the main contribution of this work. Sec-
tion 5 discusses the evaluation. We consider related work in
Section 6 and conclude in Section 7.

2 Motivation and Use Cases

This section provides two motivating examples of client-
centric P2P web apps that require BFT to manage shared
assets. The first application Loyalty Programs, demonstrates
the use of BFT in protecting shared loyalty points, while the
second, Sharing Economy, aims to mitigate distrust between
users participating in a sharing economy application.
Loyalty Programs. Local shops or merchants at a market-
place can implement a shared loyalty program in which their
customers can exchange earned loyalty points at any partic-
ipating shop [12]. To avoid abuse or fees by a central party,
the shops set up the loyalty program as a client-centric P2P
web app where the loyalty points are managed collectively
by the merchants. Decentralizing loyalty point management
involves solving BFT-consensus to prevent abuse, such as
customers double spending [27] their loyalty points.
Sharing Economy. The sharing economy [8, 18] is based
on the observation that consumer items such as tools, cars
and other equipment are expensive, while remaining unused
for most of the time. Therefore small communities, such as
neighborhoods or apartment buildings, can decide to share
their equipment to cut down costs. To avoid unwanted fees or
privacy issues associated with central parties, sharing econ-
omy applications can be provided as a client-centric P2P web
app. The web app is responsible for tracking the items and
regulating exchange, enabling the users to trace back damage
or theft. BFT-consensus eases trust requirements, expecting
that users only trust the application and a supermajority of
the network, rather than every participating user separately.

Martijn Sauwens, Kristof Jannes, Bert Lagaisse, Wouter Joosen

3 Background

This section provides the background information and ter-
minology on CvRDTs, blockchains and BFT-consensus used
in the remainder of the text. Other related technologies and
systems are discussed in Section 6.

Convergent Replicated Data Types (CvRDTs) [29] are a
flavor of Conflict-free Replicated Data Types (CRDTs) [29]
providing Strong Eventual Consistency (SEC) between mul-
tiple replicas by defining a join semilattice over a shared
state. This lattice has both a partial ordering relation (<) and
a Least-Upper-Bound (LUB) operation. Replicas periodically
exchange their local copy of the state with each other to
propagate any received updates, merging both the received
and local state using the LUB operation. CvRDTs only re-
quire a fair-lossy channel for communication, which makes
state-based protocols ideal for use in unreliable networks
such as the Internet. Note that attention should be paid at
design time to minimize the size of the CvRDT, as the entire
state is sent over the network during synchronization.

Consensus algorithms are an important part of Block-
chains [35]. Well known blockchains include Bitcoin [27],
Ethereum [34] and Hyperledger Fabric [3]. Blockchains repli-
cate a data-structure called the ledger, that is maintained by
the blockchain protocol. Users update the ledger by propos-
ing new transactions, aggregating them into blocks. Block-
chains such as Ethereum and Fabric use these transactions
to initiate calls to smart contracts [30]. Based on their spec-
ification, smart contracts can read and write to the ledger,
allowing them to update the ledger’s state in a programmable
manner. A consensus algorithm decides which block of trans-
actions is added next to the chain. Blocks are chained to-
gether by hashes, making it computationally infeasible to
change the contents of blocks or their order at a later time.
Examples of consensus algorithms used by blockchains in-
clude Nakamoto Consensus [27] and BFT, depending on the
context [35]. Nakamoto Consensus requires vast amounts of
computational resources, as it essentially tries to brute force
a solution to a cryptographic puzzle. Nakamoto Consensus
also lacks consensus finality [33] which causes confirmation
times in the order of minutes. Regardless of the used consen-
sus algorithm, peers must also store the entire blockchain to
be able to validate the state of the ledger. The high storage
overhead combined with potentially high resource usage
and confirmation times, makes blockchains a poor fit for
client-centric interactive P2P webapps.

Tickets [11] are an alternative approach for managing
shared assets in a setting with Byzantine faults. Tickets man-
age a single asset owned by an individual user. At their cre-
ation, Tickets are replicated across all available replicas to
be redeemed at a later date. To redeem a Ticket, the replica
creates a new proposal that contains both asset data and
a signature that approves the transaction. This proposal
is then synchronized and validated by the other replicas,

SCEW: Programmable BFT-Consensus with Smart Contracts for Client-Centric P2P Web Applications PaPoC’21, April 26, 2021, Online, United Kingdom

: name, from, to: string :

: guard(s:State, 1:Input,c:Ctx):bool:
BMachine © effect(:

: s:State, i:Input,c:Ctx

:):Output

(z)T ¢(3) PP

= “interface Primitive {

L . input(v:Value,c:Ctx):Proposal
Primitive Contract | : check(p:Proposal,c:Ctx):bool

' retrieve(p:Proposal,c:Ctx):Value :

i} :
(1)T ¢(4) ...

‘interface Register{

2" b : get():Value
Atomic Register . propose(p:Proposal):bool
< ‘(TgT : merge(r:Register):bool
Integration)
Logic ®4)
(7) i
o —> ‘interface RM {
= Feroltee TETEGET . update(r:Register):bool
P! g merge(ril,r2:Register):Register
IndexedDB(G) ...
T l Sequence: Create Proposal
0. call:propose 5. call:update
1. call:input 6. call:set
2. call:qguard 7. return:void
3. return:true 8. return:true
WebRTC 4. return:proposal 9. return:true

Figure 1. Schematic overview of SCEW. Components are
shown as colored rectangles and communicate with each
other using the interfaces on the right. The Create Proposal
sequence at the bottom right shows the control flow for an
application that successfully proposes a new value.

which in turn cast their vote, approving the transaction. The
Ticket is considered redeemed only after a supermajority
has approved the proposal. Tickets do not exhibit the high
storage requirements of a blockchain and are particularly
lightweight, making them suitable for browser environments.
However, their one-shot nature, together with a lack of sup-
port for multiple ownership, restricts Tickets to modelling
only simple asset life-cycles.

4 SCEW

This section presents SCEW: a programming framework for
lightweight programmable BFT-consensus in client-centric
P2P web apps with interactive collaboration. We first present
SCEW’s core concepts, followed by an overview of its sup-
porting components, such as the atomic register CvRDT,
BMachines and primitive contracts, illustrating these con-
cepts with an example. A schematic overview of SCEW’s
main components is shown in Figure 1.

The SCEW Programming Framework. We first present
the SCEW programming framework for client-centric P2P
web apps that require both lightweight BFT consensus and in-
teractive collaboration. SCEW draws inspiration from smart
contracts and their role in blockchains, combining contracts
with the asset management model of Tickets. Applications
using the SCEW programming framework must provide the
following two components: BMachine smart contracts and
integration logic, both of which are shown in Figure 1.

BMachine smart contracts model the life-cycle of a single
shared asset as a state machine. SCEW enforces the contract
by atomically updating the shared asset across all replicas
with a BFT-consensus protocol in which each replica verifies
the updates against the contract. Contrary to blockchains, a
SCEW smart contract instance only manages a single shared
asset and is not allowed to call the contract of other assets,
thus precluding support for transactions across multiple
shared assets. This restriction enables SCEW to synchronize
each shared asset independently of one another in the same
manner as Tickets [12]. Independently synchronizing assets
reduces the latency, as it limits the size of the state that needs
to be exchanged between the replicas.

The integration logic of the application acts as a consumer
of the smart contract. SCEW exposes functionality that al-
lows the application to invoke the smart contract and retrieve
the shared state. This functionality can then be used to build
user interfaces or provide other services.

Atomic Register CvRDTs. CvRDTs with atomic register
semantics [4, 12, 15, 16] provide both synchronization and
BFT-consensus. Each register stores and protects the state
s € S of a single shared asset. The state s consists of a value
v € V and a set of proposals P C V for the next value of the
register, with § and V the sets of register states and values
respectively. Atomic registers ensure a consistent view of
the shared assets by only permitting a single simultaneous
change of the register’s value v across the entire P2P net-
work, thus ruling out conflict in the sequence of changes
in register’s value and allowing the peers to agree on the
most recent value of the register. To support these seman-
tics, the register CvRDT should implement a BFT-consensus
protocol. This ensures that changes of the register’s value v
are atomic, as long as a quorum of peers behaves correctly.
SCEW requires the register CvRDT to provide the Register
interface shown in Figure 1. The get method enables the
caller to retrieve the most recent known value of the register.
Calling propose proposes a new value for the register and
digitally signs it with the private key of the peer for authen-
ticity. The proposal is then added to the register CvRDT and
subsequently accepted or rejected by the network that uses
the register’s BFT-consensus protocol. The consensus pro-
tocol is implemented by the merge method, which joins the
state of two atomic registers. Joining registers enables peers
to discover new proposals and reach a consensus on the next
value of the register. Once consensus is reached, the peers
update the value v of the register to the winning proposal
p € P, reflecting the new asset state. Paying attention to
size, the atomic register CvRDT can be implemented with
the same storage requirements and efficiency as Tickets.

BMachines. SCEW uses smart contracts to define the
life-cycle of shared assets stored in atomic register CvRDTs.
These contracts are specified as a variant of finite state
machines we call Byzantine Fault Tolerant State Machines

PaPoC’21, April 26, 2021, Online, United Kingdom

e

e
0{@;}9@‘ Offered
X
oii\oe\r
<
t
crea > feady e

Figure 2. BMachine for sharing tools in a sharing economy
use case. Users create tools with the create transition and
offer them to others by calling offer. The offer can then be
accepted (accept) or rejected (reject) by the recipient or can
be canceled (cancel) by the original owner. Items can be
decommissioned by calling report, ending the life-cycle.

or BMachines. BMachines are characterized by the 7-tuple
(0,90, %4, 25, N, 8, Q) shown in Definition 4.1.

Definition 4.1. BMachine 8 : (Q, qo, 2;, 25, N, 3, Q)

e Q the set of states, with g € Q the start state

e 3;, 3 the input and state values respectively

e N set of transition names

e the transition function § : (QXNXZ;X3) - (OXZs)
e O :(Q,3) the set of instance values for BMachines

BMachines consist of a set of states Q connected via the par-
tial transition function §. Each asset is stored as a BMachine
instance Jg = (8, w) that combines the definition of the
BMachine B and the instance’s value v € Q. Users of SCEW
define a BMachine 8 by providing a set of transitions 7.
Each transition (n, gs, g1, g, €) € T consists of the transition’s
name n € N, a source state g; € Q, a target state g; € Q, a
guard g : (X5 X %;) — B and an effect e : (35 X Z;) — X
as shown in the Transition interface of Figure 1. The transi-
tion is applicable if (i) the source state g correspond to the
current state of the BMachine instance Ig and (ii) the guard,
acting as a precondition, approves the transition based on the
current state’s associated value o5 € X and the input o; € 3;
provided by the caller. The result (g, 07) € (Q X Z;) of a
transition is the combination of both its target state g, and
the result of the effect, the latter of which is the postcondition
of the transition that computes the next state’s associated
value o] € ¥ based on the same arguments as the guard.
Using 7-, SCEW infers the states Q and composes the partial
transition function & to form a BMachine as in Definition 4.1.

Primitive Contracts. Primitive contracts are the glue be-
tween the high-level BMachines and the low-level atomic
registers, translating the states s € S and methods of the
atomic register into states ¢ € Q and transitions ¢t € 7 of
BMachines. The hosting register provides this translation
by calling the primitive contract with the methods provided
by the Primitive interface shown in Figure 1. These methods
enable the primitive contract to encode the information nec-
essary to execute the BMachine at all peers, using the set of
proposals P € V and value v € V of the atomic register.

Martijn Sauwens, Kristof Jannes, Bert Lagaisse, Wouter Joosen

Register Modifications. To support primitive contracts, the
atomic register has to call the Primitive interface when ex-
ecuting its methods. To initiate a state transition, users of
SCEW invoke the propose method of the hosting register,
providing the transition’s input o; € X; as arguments. The
register then calls the input method of the primitive contract
to encode the proposal in a form that allows the other peers to
verify the proposal. This encoding is then digitally signed by
the register for integrity and non-repudiation. Consequently,
when fetching the value w of the BMachine instance 7g with
the register’s get method, the register must call retrieve to de-
code the value v stored in the register. Joining register state
with merge requires the register to check the validity of any
new proposals p € P with the check method. This method
contains the validation logic of the primitive contract and
uses the stored BMachine instance 7g to make a decision.

Executing BMachines. To execute BMachines on atomic
registers, the primitive contract must encode the BMachine
instance (8, (g, 05)) and any pending proposals in terms of
the register state s € S, such that other peers can validate any
new proposals using the BMachine contract 8. One possible
encoding for proposals is (n, 03, (¢’, 07)) € (N XZ; X Q). The
field n names the transition invoked by the proposal, while o;
and (q’, o¢) are for validation. A proposal is deemed valid by
the primitive contract if (i) the transition n is defined for the
current state g of the BMachine instance (8, (g, 05)), (ii) the
guard with arguments (o, 0;) yields true, (iii) the effect with
arguments (o5, 0;) returns o and (iv) the target state of the
transition corresponds to ¢’. Once the consensus protocol
approves the proposal, the latter is assigned as the new value
v” € V of the register and the retrieve method can be used
to decode the new value w’ = (q’, 07) from the BMachine
instance. The sequence for proposing a new value by the
integration logic is shown in Figure 1.

Example. Developers using the SCEW middleware only
have to implement BMachines and integration logic, being
oblivious to the BFT-protocol provided by the middleware.
Listing 1 shows a stylized implementation of the offer transi-
tion, a transition which initiates the exchange of tools for the
sharing economy contract of Figure 2. From a developer’s
perspective, the guard first checks if the caller is the owner
of the tool, after which the effect updates the BMachine in-
stance value o5 € X with new ownership information. If
both calls succeed, the state of the BMachine is updated from
Ready to Offered, completing the transition. The integration
logic for calling the transition and retrieve the resulting value
is shown in Listing 2.

Listing 1. Implementation of the offer transition, types from
the Transition interface have been expanded for clarity.

1 type Offer={borrower: ID};

2 type ToolOffer={
3 tool: ID; offerer: ID; offeree: ID;

SCEW: Programmable BFT-Consensus with Smart Contracts for Client-Centric P2P Web Applications PaPoC’21, April 26, 2021, Online, United Kingdom

4}

5 type State={tool: ID;owner: ID};
6 type Ctx={caller: ID};

7 const offerTransition: Transition = {

8 name: 'offer ' ,from: 'Ready ',to: 'Offered ',
9 State ,o0: Offer,ctx: Ctx)=>

10 s.owner===ctx . caller ,

11 effect :(s:State ,o0:Offer,ctx:Ctx)=>({

12 tool: s.tool,

guard :(s:

13 offerer: s.owner,

14 offerree: o.borrower,
15 } as ToolOffer),

16 };

Listing 2. Integration logic for calling the offer transition
on a register containing the tool and retrieve the result.

1 await tool.propose ({

2 transition: 'offer ',

3 args: {borrower: borrowerID },
4 });

5 const value = await tool.get();

5 Evaluation

This section presents and discusses the evaluation of SCEW.
To evaluate SCEW, we implemented a research prototype
of both the middleware and a tool sharing application. The
contract used by the application is shown in Figure 2. The
atomic registers are implemented using a quorum based
BFT-protocol similar to Tickets [12]. We first show the ex-
perimental setup, followed by a discussion of the results.

Setup. The experiments aim to measure the performance
and scalability of SCEW in terms of latency for varying
network sizes in different scenarios. The first two scenarios,
register-only and contract, aim to establish a baseline for both
the performance overhead caused by the contracts as well
as the performance of a network with no faults. The third
scenario crash investigates the impact of crashes, and the
last scenario malicious considers malicious peers which are
actively injecting faults by violating the contract.

The experiments were conducted on the Azure public
cloud. The P2P network is emulated by 4 to 20 standard F8s
v2 virtual machines with 8 vCPUs and 16GB RAM. Each VM
runs 5 containerized instances of the tool sharing application
in the chromium web browser. The P2P overlay is structured
as a flat overlay where each browser is connected with at
least 5 other peers. We modelled 4G mobile network condi-
tions with the Linux traffic control tool tc [10], increasing the
network delay to 60ms [7]. Users are emulated by exchang-
ing tools for 5 minutes at a fixed transaction rate of 1 tx/s,
scaling down proportionally as peers leave the network. This
transaction rate was chosen as an over approximation for

any real-world interactions. Each experiment was executed
ten times to increase confidence in our results.

Latency [s]

3.5 -
i

TR

Do
|
H...
—t

L il B
T+ Hg tiRB 7% 17
1*+i1; i%ii T Hri Ti
TF -
o Peers [#]
2‘0 4‘0 6‘0 8‘0 1(;0

[Register-Only [Contracts [Crash [l Malicious

Figure 3. Distribution of latency versus network size for
each scenario. Whiskers indicate the 1™ and 99" percentile.

Results and discussion. Results are shown in Figure 3.
Comparing the first two scenarios register-only and contracts,
it is clear that adding smart contracts only introduces very
limited overhead. Both scenarios show latencies below 2
seconds, even for larger networks, which is sufficient for
the interactive performance required by both use cases. The
increase in latency for larger networks can mostly be attrib-
uted to an increase in overhead by the underlying consensus
protocol, as more peers need to vote to reach the quorum.

For both the crash and malicious scenarios 30% of all peers
are affected by faults. The 99 percentile latency increases
in both scenarios for larger networks, but stays below 3.2
seconds. This relative increase in latency compared to earlier
scenarios can be explained by the way in which the network
handles the aforementioned faults. In the case of crashes,
peers stop actively partaking in the application, while the
remaining peers try to heal the overlay network. The sce-
nario with malicious peers behaves similarly, as peers which
violate the contract will be ignored by any honest peers
that detect malicious behavior. In both cases the quorum re-
quired to reach consensus remains unaltered while the active
portion of the network decreases, meaning that a smaller
number of peers must collect the same amount of votes to
confirm a proposal. This increases the contribution of slower
peers to the critical path, increasing latency.

Overall, our evaluation shows that SCEW is able to keep
transaction latencies below 3.2 seconds in 99% of all trans-
actions, even in the case of failures in networks with 100
peers. These latencies are acceptable for both the Loyalty
Programs and Sharing Economy use cases, as transactions are
only performed when loyalty points are redeemed and tools
are exchanged between users.

PaPoC’21, April 26, 2021, Online, United Kingdom

6 Related Work

This section discusses related work not mentioned in Sec-
tion 3. We first discuss examples of frameworks for collabo-
rative P2P web apps, followed by delta-state-based CRDTs
and C-CRDTs. We next discuss Fabric CRDT and wrap up
with a discussion of FSolidM, a state machine representation
of smart contracts for the Ethereum blockchain.

Automerge [14], Legion [31], OWebSync [13] and Yjs [24,
25] are frameworks for developing P2P web apps in the
browser. All four frameworks make use of CRDT technology
for synchronization such as operation-based Commutative
Replicated Data Types [29], A-CRDTs [32] and state-based
CvRDTs [29], making them resilient against crashes. How-
ever, none of there frameworks considers Byzantine faults.

6-CRDTs [2] and A-CRDTs [32] are delta-state-based CRDTs
that focus on network efficiency by using deltas to incremen-
tally update the state of CRDTs. SCEW instead uses a Merkle
tree approach for efficient state synchronization [13].

Computational CRDTs or C-CRDTs [20, 22, 23] are CRDTs
that perform collective computations, using CRDT semantics
to merge results from local computations into the final result.
Examples include the distributed computation of a sum [23]
and top-K leaderboards [22]. This stands in contrast with
smart contracts, which all perform the same computation
and reach a consensus on the result of a single invocation.

FabricCRDT [21] combines CRDTs with the Hyperledger
Fabric [3] blockchain. FabricCRDT avoids Multi Version Con-
currency Control (MVCC) conflicts by using CRDT trans-
actions. These transactions merge conflicting values in the
ledger using CRDT semantics. SCEW instead uses CvRDTs
inside the protocol to achieve consensus.

FSolidM [19] is a tool for building and verifying Ethereum
smart contracts as finite state machines. It does so by storing
the state of the contract as a single object that persists across
state transitions. However, this does not work well with
a state-based approach where the entire object, including
superfluous fields, needs to be sent over the network during
synchronization. We instead used a representation that re-
uses the transition’s results as the state of the register.

7 Conclusion

This work presented SCEW, a programming framework for
lightweight programmable BFT-consensus in client-centric
P2P web apps that require interactive collaboration. SCEW
manages shared assets and their life-cycle using a combina-
tion of smart contracts based on state machines and CvRDTs
with atomic register semantics, implementing a BFT-consen-
sus protocol. Assets are managed individually rather than
collectively, allowing for efficient synchronization at the cost
of lacking support for transactions involving multiple assets.
However, the absence of cross-asset transactions poses no
problems for the use cases considered in this work. The eval-
uation shows that SCEW is suited to implement systems that

Martijn Sauwens, Kristof Jannes, Bert Lagaisse, Wouter Joosen

scale up to 100 peers, keeping the latency below 2 seconds
in scenarios with no faults. Even in the case of Byzantine
faults, performance remains acceptable with latencies under
3.2 seconds.

References

[1] Ali Alabbas and Joshua Bell. 2018. Indexed Database APL. Recom-
mendation. W3C. https://www.w3.0rg/TR/2018/REC-IndexedDB-2-
20180130/
Paulo Sérgio Almeida, Ali Shoker, and Carlos Baquero. 2018. Delta
state replicated data types. J. Parallel and Distrib. Comput. 111 (2018),
162-173. https://doi.org/10.1016/j.jpdc.2017.08.003
Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin,
Konstantinos Christidis, Angelo De Caro, David Enyeart, Christo-
pher Ferris, Gennady Laventman, Yacov Manevich, Srinivasan Mu-
ralidharan, Chet Murthy, Binh Nguyen, Manish Sethi, Gari Singh,
Keith Smith, Alessandro Sorniotti, Chrysoula Stathakopoulou, Marko
Vukoli¢, Sharon Weed Cocco, and Jason Yellick. 2018. Hyperledger
Fabric: A Distributed Operating System for Permissioned Blockchains.
In Proceedings of the Thirteenth EuroSys Conference (Porto, Portugal)
(EuroSys ’18). Association for Computing Machinery, New York, NY,
USA, Article 30, 15 pages. https://doi.org/10.1145/3190508.3190538
Hagit Attiya, Amotz Bar-Noy, and Danny Dolev. 1995. Sharing Mem-
ory Robustly in Message-Passing Systems. J. ACM 42, 1 (Jan. 1995),
124-142. https://doi.org/10.1145/200836.200869
Adam Bergkvist, Daniel C. Burnett, Cullen Jennings, Anant Narayanan,
Bernard Aboba, Taylor Brandstetter, Jan-Ivar Bruaroey, and Hen-
rik Bostrém. 2020. WebRTC 1.0: Real-time Communication Between
Browsers. W3C. https://www.w3.0rg/TR/2020/CRD-webrtc-20201125/
Miguel Castro and Barbara Liskov. 1999. Practical Byzantine Fault
Tolerance. In Proceedings of the Third Symposium on Operating Systems
Design and Implementation (New Orleans, Louisiana, USA) (OSDI ’99).
USENIX Association, USA, 173-186.
Kevin Fitchard. 2019. USA Mobile Network Experience Report January
2019. Opensignal. https://www.opensignal.com/reports/2019/01/usa/
mobile-network-experience
Koen Frenken and Juliet Schor. 2017. Putting the sharing economy
into perspective. Environmental Innovation and Societal Transitions 23
(2017), 3 - 10. https://doi.org/10.1016/j.eist.2017.01.003 Sustainability
Perspectives on the Sharing Economy.
[9] Ian Hickson. 2015. Web Workers. Working Draft. W3C. http://www.
w3.org/TR/2015/WD-workers-20150924/
[10] Bert Hubert. 2020. t¢(8). Linux man-pages project. https://man7.org/
linux/man-pages/mang/tc.8.html
[11] Kristof Jannes, Bert Lagaisse, and Wouter Joosen. 2019. The Web
Browser as Distributed Application Server: Towards Decentralized
Web Applications in the Edge. In Proceedings of the 2nd International
Workshop on Edge Systems, Analytics and Networking (Dresden, Ger-
many) (EdgeSys ’19). Association for Computing Machinery, New York,
NY, USA, 7-11. https://doi.org/10.1145/3301418.3313938
[12] Kristof Jannes, Bert Lagaisse, and Wouter Joosen. 2019. You Don’t Need
a Ledger: Lightweight Decentralized Consensus Between Mobile Web
Clients. In Proceedings of the 3rd Workshop on Scalable and Resilient
Infrastructures for Distributed Ledgers (Davis, CA, USA) (SERIAL ’19).
Association for Computing Machinery, New York, NY, USA, 3-8. https:
//doi.org/10.1145/3366611.3368143
[13] Kristof Jannes, Bert Lagaisse, and Wouter Joosen. 2021. OWebSync:
Seamless Synchronization of Distributed Web Clients. IEEE Transac-
tions on Parallel and Distributed Systems (2021). https://doi.org/10.
1109/TPDS.2021.3066276
[14] Martin Kleppmann, Adam Wiggins, Peter van Hardenberg, and Mark
McGranaghan. 2019. Local-First Software: You Own Your Data, in

[2

—

3

—

[4

=

(5

—

(6

—

[7

—

[8

[t

https://www.w3.org/TR/2018/REC-IndexedDB-2-20180130/
https://www.w3.org/TR/2018/REC-IndexedDB-2-20180130/
https://doi.org/10.1016/j.jpdc.2017.08.003
https://doi.org/10.1145/3190508.3190538
https://doi.org/10.1145/200836.200869
https://www.w3.org/TR/2020/CRD-webrtc-20201125/
https://www.opensignal.com/reports/2019/01/usa/mobile-network-experience
https://www.opensignal.com/reports/2019/01/usa/mobile-network-experience
https://doi.org/10.1016/j.eist.2017.01.003
http://www.w3.org/TR/2015/WD-workers-20150924/
http://www.w3.org/TR/2015/WD-workers-20150924/
https://man7.org/linux/man-pages/man8/tc.8.html
https://man7.org/linux/man-pages/man8/tc.8.html
https://doi.org/10.1145/3301418.3313938
https://doi.org/10.1145/3366611.3368143
https://doi.org/10.1145/3366611.3368143
https://doi.org/10.1109/TPDS.2021.3066276
https://doi.org/10.1109/TPDS.2021.3066276

SCEW: Programmable BFT-Consensus with Smart Contracts for Client-Centric P2P Web Applications

(15]

(16]

(17]

(18

[t

(19]

20

[t

[21]

[22]

(23]

[24]

[25]

[26]
[27]

(28]

Spite of the Cloud. In Proceedings of the 2019 ACM SIGPLAN Inter-
national Symposium on New Ideas, New Paradigms, and Reflections
on Programming and Software (Athens, Greece) (Onward! 2019). As-
sociation for Computing Machinery, New York, NY, USA, 154-178.
https://doi.org/10.1145/3359591.3359737

Leslie Lamport. 1986. On interprocess communication. Distributed
Computing 1, 2 (01 Jun 1986), 86—101. https://doi.org/10.1007/
BF01786228

Leslie Lamport. 1986. On interprocess communication. Distributed
Computing 1, 2 (01 Jun 1986), 77-85. https://doi.org/10.1007/
BF01786227

Leslie Lamport, Robert Shostak, and Marshall Pease. 1982. The Byzan-
tine Generals Problem. ACM Trans. Program. Lang. Syst. 4, 3 (July
1982), 382-401. https://doi.org/10.1145/357172.357176

Akash Madhusudan, Iraklis Symeonidis, Mustafa Mustafa, Ren Zhang,
and Bart Preneel. 2019. SC2Share: Smart Contract for Secure Car
Sharing. In Proceedings of the 5th International Conference on Infor-
mation Systems Security and Privacy - Volume 1: ICISSP,. INSTICC,
SciTePress, Prague, Czech Republic, 163-171. https://doi.org/10.5220/
0007703601630171

Anastasia Mavridou and Aron Laszka. 2018. Designing Secure
Ethereum Smart Contracts: A Finite State Machine Based Approach. In
Financial Cryptography and Data Security, Sarah Meiklejohn and Kazue
Sako (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 523-540.
Christopher Meiklejohn and Peter Van Roy. 2015. Lasp: A Language
for Distributed, Coordination-Free Programming. In Proceedings of the
17th International Symposium on Principles and Practice of Declarative
Programming (Siena, Italy) (PPDP ’15). Association for Computing
Machinery, New York, NY, USA, 184-195. https://doi.org/10.1145/
2790449.2790525

Pezhman Nasirifard, Ruben Mayer, and Hans-Arno Jacobsen. 2019.
FabricCRDT: A Conflict-Free Replicated Datatypes Approach to Per-
missioned Blockchains. In Proceedings of the 20th International Mid-
dleware Conference (Davis, CA, USA) (Middleware ’19). Association
for Computing Machinery, New York, NY, USA, 110-122. https:
//doi.org/10.1145/3361525.3361540

David Navalho, Sérgio Duarte, and Nuno Preguica. 2015. A Study of
CRDTs That Do Computations. In Proceedings of the First Workshop on
Principles and Practice of Consistency for Distributed Data (Bordeaux,
France) (PaPoC ’15). Association for Computing Machinery, New York,
NY, USA, Article 1, 4 pages. https://doi.org/10.1145/2745947.2745948
David Navalho, Sérgio Duarte, Nuno Preguica, and Marc Shapiro. 2013.
Incremental Stream Processing Using Computational Conflict-Free
Replicated Data Types. In Proceedings of the 3rd International Workshop
on Cloud Data and Platforms (Prague, Czech Republic) (CloudDP ’13).
Association for Computing Machinery, New York, NY, USA, 31-36.
https://doi.org/10.1145/2460756.2460762

Petru Nicolaescu, Kevin Jahns, Michael Derntl, and Ralf Klamma. 2015.
Yjs: A Framework for Near Real-Time P2P Shared Editing on Arbitrary
Data Types. In Engineering the Web in the Big Data Era, Philipp Cimi-
ano, Flavius Frasincar, Geert-Jan Houben, and Daniel Schwabe (Eds.).
Springer International Publishing, Cham, 675-678.

Petru Nicolaescu, Kevin Jahns, Michael Derntl, and Ralf Klamma.
2016. Near Real-Time Peer-to-Peer Shared Editing on Extensible
Data Types. In Proceedings of the 19th International Conference on
Supporting Group Work (Sanibel Island, Florida, USA) (GROUP ’16).
Association for Computing Machinery, New York, NY, USA, 39-49.
https://doi.org/10.1145/2957276.2957310

Jakob Nielsen. 2010. Website Response Times. Nielsen Norman Group.
https://www.nngroup.com/articles/website-response-times/
Nakamoto Satoshi. 2008. Bitcoin: A Peer-to-Peer Electronic Cash System.
https://bitcoin.org/bitcoin.pdf

Fred B. Schneider. 1984. Byzantine Generals in Action: Implement-
ing Fail-Stop Processors. ACM Trans. Comput. Syst. 2, 2 (May 1984),

[29]

[30]

[31]

[32]

[33]

[34]

[35]

PaPoC’21, April 26, 2021, Online, United Kingdom

145-154. https://doi.org/10.1145/190.357399

Marc Shapiro, Nuno Preguica, Carlos Baquero, and Marek Zawirski.
2011. Conflict-free Replicated Data Types. Research Report RR-7687.
INRIA. 18 pages. https://hal.inria.fr/inria-00609399

Nick Szabo. 1997. Formalizing and Securing Relationships on Public
Networks. First Monday 2, 9 (Sept. 1997). https://doi.org/10.5210/fm.
v2i9.548

Albert van der Linde, Pedro Fouto, Joao Leitao, Nuno Preguica, San-
tiago Castifieira, and Annette Bieniusa. 2017. Legion: Enriching In-
ternet Services with Peer-to-Peer Interactions. In Proceedings of the
26th International Conference on World Wide Web (Perth, Australia)
(WWW °17). International World Wide Web Conferences Steering
Committee, Republic and Canton of Geneva, CHE, 283-292. https:
//doi.org/10.1145/3038912.3052673

Albert van der Linde, Jodo Leitdo, and Nuno Preguica. 2016. A-CRDTs:
Making §-CRDTs Delta-Based. In Proceedings of the 2nd Workshop on
the Principles and Practice of Consistency for Distributed Data (London,
United Kingdom) (PaPoC ’16). Association for Computing Machinery,
New York, NY, USA, Article 12, 4 pages. https://doi.org/10.1145/
2911151.2911163

Marko Vukoli¢. 2016. The Quest for Scalable Blockchain Fabric: Proof-
of-Work vs. BFT Replication. In Open Problems in Network Security,
Jan Camenisch and Dogan Kesdogan (Eds.). Springer International
Publishing, Cham, 112-125.

Gavin Wood. 2014. Ethereum: A secure decentralised generalised trans-
action ledger (eip-150 revision ed.). http://gavwood.com/paper.pdf
X. Xu, I. Weber, M. Staples, L. Zhu, J. Bosch, L. Bass, C. Pautasso,
and P. Rimba. 2017. A Taxonomy of Blockchain-Based Systems for
Architecture Design. In 2017 IEEE International Conference on Software
Architecture (ICSA). IEEE, Lyon, France, 243-252. https://doi.org/10.
1109/1CSA.2017.33

https://doi.org/10.1145/3359591.3359737
https://doi.org/10.1007/BF01786228
https://doi.org/10.1007/BF01786228
https://doi.org/10.1007/BF01786227
https://doi.org/10.1007/BF01786227
https://doi.org/10.1145/357172.357176
https://doi.org/10.5220/0007703601630171
https://doi.org/10.5220/0007703601630171
https://doi.org/10.1145/2790449.2790525
https://doi.org/10.1145/2790449.2790525
https://doi.org/10.1145/3361525.3361540
https://doi.org/10.1145/3361525.3361540
https://doi.org/10.1145/2745947.2745948
https://doi.org/10.1145/2460756.2460762
https://doi.org/10.1145/2957276.2957310
https://www.nngroup.com/articles/website-response-times/
https://bitcoin.org/bitcoin.pdf
https://doi.org/10.1145/190.357399
https://hal.inria.fr/inria-00609399
https://doi.org/10.5210/fm.v2i9.548
https://doi.org/10.5210/fm.v2i9.548
https://doi.org/10.1145/3038912.3052673
https://doi.org/10.1145/3038912.3052673
https://doi.org/10.1145/2911151.2911163
https://doi.org/10.1145/2911151.2911163
http://gavwood.com/paper.pdf
https://doi.org/10.1109/ICSA.2017.33
https://doi.org/10.1109/ICSA.2017.33

	Abstract
	1 Introduction
	2 Motivation and Use Cases
	3 Background
	4 SCEW
	5 Evaluation
	6 Related Work
	7 Conclusion
	References

