IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. X, MONTH YEAR

WebLedger: a Client-centric Web-based
BFT Ledger for Decentralized and Resilient
Community Apps

Kristof Jannes, Emad Heydari Beni, Wouter Joosen and Bert Lagaisse

Abstract—One of the visions of Tim Berners-Lee, the founder of the web, is that the web should shift to a client-centric, decentralized
model where web clients become the leading execution environment for application logic and data storage. Both Gartner and the Web3
foundation consider client-centric decentralization as one of the key properties of Web 3.0.

However, existing peer-to-peer web middleware only support operation in a fully trusted client network. Other decentralized solutions
often use a heavyweight blockchain platform in the backend. Moreover, traditional Byzantine consensus protocols are not well-suited
for a decentralized client-centric web with many network disruptions or node failures.

In this paper, we present WebLedger, a browser-based middleware for decentralized applications in small, community-driven networks.
We propose a novel, optimistic, leaderless consensus protocol, tolerating Byzantine replicas, combined with a robust and efficient
state-based synchronization protocol. This state-based protocol with authenticated data structures makes WebLedger resilient against
network failures, and does not require that all replicas are directly connected to each other. WebLedger uses an optimized
implementation of the standard BLS scheme for efficient aggregation and storage of signatures. No large backend infrastructure is
required, as the middleware is purely browser-based. Using a state-based protocol, no transaction log or blockchain is stored, keeping
the overall storage footprint small for client-centric devices.

Our performance evaluation shows that WebLedger can achieve finality of transactions within seconds in community-driven networks
of mobile web clients, even in the context of network problems, node failures, and Byzantine behavior.

Index Terms—Peer-to-peer, Byzantine fault tolerance, Web Applications

<+

1 INTRODUCTION

EB 3.0 can be defined as the decentralized web where
W users are in control of their data [1], and that replaces
centralized intermediaries with decentralized networks and
platforms [2], [3], [4]. Community-driven, decentralized net-
works can open the road to many use cases for the sharing
economy or shared loyalty programs for local communi-
ties [5]. Such client-centric collaborations can for example
enable a small network of merchants in a local shopping
street, or at a farmer’s market to set up a shared loyalty
program between the merchants in an ad-hoc fashion. Web-
Ledger can also serve as a framework to explore many other
collaborative use cases, that were previously not possible for
the average person to set up. These small-scale, specialized
collaborative networks can empower motivated citizens to
bring value to their local community, without involving
an incumbent big-tech company that can change the rules
unilateral at any moment.

In the last decade, decentralized interaction between
distrusting parties has gained a lot of attention, starting with
the Bitcoin blockchain. Bitcoin uses Nakamoto consensus [6]
to solve the double-spending problem in a peer-to-peer
electronic cash system, and uses Proof-of-Work (PoW) [7]
for Sybil control. Another PoW blockchain is Ethereum [8],
which allows everyone to run arbitrary application code
on the blockchain. Unfortunately, these PoW blockchains

o The authors are with imec-DistriNet, KU Leuven, 3001 Leuven, Belgium.
E-mail: {kristof.jannes, emad.heydaribeni, wouter.joosen, bert.lagaisse}
@cs.kuleuven.be

are too slow for many use cases. They need minutes, or
even an hour, to confirm a transaction with high probability.
Moreover, they consume a large amount of energy and
need a lot of processing power. Next to the computationally
expensive Nakamoto consensus protocol, classical Byzan-
tine fault tolerant (BFT) consensus protocols can be used
such as PBFT [9], BFT-SMaRt [10], Tendermint [11], Algo-
rand [12], Ouroboros [13], or HotStuff [14]. These protocols
are much faster than Nakamoto consensus, but they do not
scale well with an increasing number of participants. At
last, Avalanche consensus [15] tries to solve the scalability
problem by using the concept of meta-stability.

Unfortunately, all these blockchain frameworks and con-
sensus protocols are designed for a rather heavy-weight
infrastructure that has lots of CPU or GPU power, storage
space, and a low-latency network connection. The moti-
vated citizens in our envisioned use cases do not have this
kind of knowledge, budget, and infrastructure available to
set up a private blockchain network between them. They
want to use their existing hardware such as a low-end
computer, or even a mobile device. Their internet connection
is often only a domestic cable connection, unstable WiFi,
or a slow 4G connection which brings higher latency and
packet loss. They could make use of a public blockchain
network, at the cost of paying a fee for every transaction.
This transaction fee lowers the economic viability of this
approach. A private network between the citizens without
fees is more suitable. This also has the advantage that not
all data is publicly readable by the whole world.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. X, MONTH YEAR 2

Another trend is Progressive Web Apps [16], which focus
on client-centric web application architectures with native-
app features. Browsers and client-side web technology offer
more and more capabilities to enable fully client-side web
applications that can operate independently and in a stand-
alone fashion, in contrast to the server-centric model [17],
[18]. The web browser might be able to function as a
ubiquitous substrate to build the envisioned collaborative,
decentralized applications without the need for a heavy-
weight blockchain. However, current state-of-the-art peer-
to-peer data synchronization frameworks for the browser
such as Legion [19], Yjs [20], Automerge [21], and OWeb-
Sync [22] focus on full replication and consistency between
trusted clients. Each replica can modify all data, and all
modifications are automatically replicated to all replicas.
These protocols lack Byzantine fault tolerance.

In this paper, we present WebLedger, a peer-to-peer data
synchronization framework for decentralized web appli-
cations between mistrusting parties. WebLedger combines
the efficient operation and lightweight setup of a peer-to-
peer data synchronization framework with the resilience
of a blockchain in a Byzantine environment. WebLedger
does not keep track of an operation log or transaction
history, keeping the storage footprint small. The ledger
is fully maintained and agreed upon by browser-clients.
The replicas do not need to be connected to every other
replica directly, as the authenticated state can be replicated
over multiple hops. WebLedger builds upon the following
technical contributions:

 Lightweight, leaderless, client-side Byzantine fault tol-
erant synchronization and consensus.

e Robust, state-based synchronization of both the data
and the votes for the consensus protocol using state-
based CRDTs and Merkle-trees.

o Efficient computation and compact storage of signa-
tures using the BLS signature scheme.

Our evaluation, using our application use case of a shared
loyalty program between small-scale merchants, shows
that WebLedger is a practical solution for these kinds of
community-driven use cases. WebLedger achieves transac-
tion finality in the order of seconds, even in networks with
100 clients, or in unstable network conditions. No complex
infrastructure is required, the participating merchants only
need a browser and an internet connection.

Section 2 further discusses some motivating use cases
and background in more depth. Section 3 presents Web-
Ledger’s lightweight BFT consensus protocol and the state-
based replication strategy. The detailed web-based middle-
ware architecture of WebLedger is elaborated in Section 4.
Our evaluation in Section 5 focuses on many aspects of
performance in both the optimistic scenario as well as more
realistic and even Byzantine scenarios. Section 6 elaborates
on important related work. We conclude in Section 7.

2 MOTIVATION AND BACKGROUND

This section further motivates the need for a lightweight,
robust consensus middleware by describing several
community-driven use cases. Then we give some back-
ground on state-of-the-art approaches using a blockchain
and BFT consensus.

2.1 Motivational use cases

We describe three initial use cases that would benefit from
the lightweight consensus offered by WebLedger. They all
involve business transactions happening in real life and
need interactive performance, rather than high throughput.

Sharing economy. Small communities, such as an apart-
ment building or local neighborhood, can share tools or
cars [23] with each other using a P2P platform to keep
track of the current possession and reservation of tools and
cars [24]. When a tool is being exchanged, it is checked on
potential damage which can be registered in the network.

Loyalty programs. Integrated loyalty programs can be
more effective than traditional loyalty programs that are
limited to a single company [25]. Think about airlines that
award miles which can be redeemed with several part-
ners. Such collaborations usually introduce an extra trusted
intermediary and add more layers of management and
operational logistics. This trusted party can charge high
transaction costs to be part of the integrated network. For
small merchants on a farmer’s market or in a local shopping
street, this operational overhead is too much of a burden.
A decentralized P2P network can enable fast and secure
creation, redemption, and exchange of loyalty points across
the different merchants.

Microloans. Microloans enable individuals, rather than
banks, to issue loans to other individuals or small busi-
nesses. This has the advantage that also individuals with
a bad credit rating or without enough collateral can receive
a loan. This community initiative can prevent loan sharks,
especially in developing countries.

Vision. We envision that communities will be able to use
WebLedger as a platform to explore new applications and
use cases that were previously not feasible. While our initial
proof-of-concept implementation is targeting the browser,
the techniques explained in this paper can be easily ported
towards native mobile and lightweight desktop applica-
tions. WebLedger does not need any complex infrastructure,
and it currently provides a simple JavaScript-based API,
which allows many developers to start developing decen-
tralized applications. Extensions of WebLedger, such as
SCEW [26], a smart-contract abstraction on top of WebLed-
ger, can make the barrier even lower for developers. Those
decentralized applications can be made open source, which
allows many people to verify and vouch for them. Local
communities who want to set up a decentralized application
between the local participants, can use such an open-source
application and do not need to concern themselves with a
complex infrastructure set up to run the application.

2.2 Background on blockchains and BFT consensus

Existing blockchains can be roughly split into two cat-
egories: public and permissioned blockchains. Public
blockchains are open for everyone to participate in. Two
examples are Bitcoin [6] and Ethereum [8]. Bitcoin allows
everyone to host a replica node and submit transactions.
However, Bitcoin is quite slow, as a new block is only
created every 10 minutes on average. This means that trans-
actions take on average 10 minutes to be confirmed by the
network. But as multiple conflicting chains can occur, one
must wait for at least 6 blocks to be sure that a transaction

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. X, MONTH YEAR 3

will not be reverted. This increases the total latency to one
hour, which is too slow for many of the motivational use
cases. Ethereum is another public blockchain with a much
faster average block time, and consequently a lower latency.
Ethereum allows everyone to write smart-contracts to be
executed by the Ethereum network. Each invocation of a
contract costs a small amount of Ether (called gas). This
makes Ethereum infeasible for small business transactions
such as loyalty points, as the total cost will become too high.

Permissioned or private blockchains use access control to
limit who can see and create transactions on the blockchain.
Because they can only be accessed by a limited number
of known parties, transaction fees are not required to re-
ward miners and combat spam. An example is Hyperledger
Fabric [27]. These private blockchains can use a Byzantine
fault tolerant consensus protocol to reach consensus over
which transactions to execute and in which order. They have
much smaller latency and can process more transactions
per second compared to the public blockchains. However,
to set up Hyperledger Fabric in a decentralized fashion,
there is a large back-end infrastructure required. The actual
blockchain network consists of many nodes: peers, orderers,
REST-API servers, database servers, and a certificate author-
ity. Setting up and managing these services requires a lot
of infrastructural management for small merchants. They
do not have the knowledge nor budget for such a deploy-
ment, especially considering the maintenance overhead and
resource costs. These small merchants want to quickly set
up an integrated loyalty network with minimal back-end
setup. However, most of them already own a desktop or a
mobile computer such as a laptop or tablet.

Two existing state-of-the-art protocols for BFT consensus
are BFT-SMaRt [10] and Tendermint [11], [28]. BFT-SMaRt is
a more traditional BFT protocol, similar to PBFT [29], where
all replicas are connected to each other, and one leader
drives the protocol. If that leader fails, a new one will have
to be elected before any progress can be made. BFT-SMaRt
can be used in Hyperledger Fabric [30]. Tendermint [28]
uses Gossip for communication between the replicas. There
is still a leader, however, that leader changes frequently.
Tendermint is used in the Cosmos blockchain [31].

3 OPTIMISTIC STATE-BASED BFT CONSENSUS

This section explains the state-based consensus protocol
used in WebLedger. First, it describes the adversary model
and its properties. Then it explains the protocol specifica-
tion. At last, this section provides safety and liveness proofs.

3.1

The core protocol is an asynchronous, leaderless, Byzan-
tine fault tolerant consensus protocol. In an asynchronous
network, messages are eventually delivered, but no timing
assumption is made [32]. An adversary might also corrupt
up to f replicas of the n > 3f + 1 total replicas. They
can deviate from the protocol in any arbitrary way. Such
replicas are called Byzantine, while the replicas that are
strictly following the protocol are called honest. We assume
attackers cannot forge the used asymmetric signatures or
find collisions for the used cryptographic hash functions.

Overview and adversary model

The protocol is used to implement an Atomic Regis-
ter [33] that can hold a single value that can be read and
written by multiple replicas. All writes are atomic, meaning
that only a single state transition can happen at any time.
Extra conditions can be applied to limit who can write to it,
and which values are acceptable.

The protocol does not use a leader to coordinate the
protocol, removing a common single-point-of-failure com-
pared to many existing BFT protocols. In such leader-based
protocols, the failure of a leader leads to a long delay
before consensus can be reached. The consensus protocol
presented here uses voting, where every replica has exactly
one vote. The set of replicas is fixed, and changes to the
replica set have to be made outside the protocol. Unlike
contemporary blockchains, consensus is reached for each
register separately, and there is no chain of transactions.
Only the current state, its commit certificate, and proposals
for the next state are stored.

Formal properties: Let R be a cluster of n replicas with
f Byzantine nodes and with n > 3f + 1. WebLedger
guarantees the following properties:

o Non-divergence: If replicas R, Ry € R are able to
construct commit certificates ¢; for value v and ¢y for
value vy at version V, then v; = vs.

o Termination: If an honest replica R € R proposes a
new value v at version V/, eventually a replica will be
able to construct a valid commit certificate ¢ for some
value at version V.

The first property is a safety property and guarantees
that all state changes are atomic for the whole network. The
second property is a liveness property and guarantees that
non-conflicting transactions will be eventually executed by
all replicas.

3.2 Protocol specification

Each atomic register has its own state which consists of
three parts. The first part is the current value and a commit
certificate that proves the validity of the value. It contains
signatures of a supermajority of n — f replicas. The second
part is an array of rounds that contains proposals for new
values. In each round, there can be multiple proposed val-
ues. The third part consists of a new proposed value and a
partial commit certificate for that value. This state is shown
at the top of Fig. 2. The atomic register is implemented as a
register CRDT with a GET, SET and MERGE operation.
Consensus is reached in two steps, first a supermajority
needs to be reached in the last round of the proposals, then a
supermajority needs to be reached for the proposed commit
certificate. The first step will establish a resilient quorum,
while the second step will guarantee that sufficiently many
replicas know that such a quorum has been achieved.

3.2.1 State-base replication protocol

The current value, proposals, and commit certificates are
replicated by using a state-based Gossip protocol. This pro-
tocol is a peer-to-peer version of OWebSync [22], which uses
state-based Conflict-free Replicated Data Types (CRDT) [34]
combined with a Merkle-tree [35] to efficiently replicate the
updated state. If the state of two replicas is the same, only

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. X, MONTH YEAR 4

SET(5)
A [];J_ SN [(57{A})];J_ [(57{*’4’3’0})];(57 {AvB})
B [}L (5.4, BY)]; L [(5,{4, B,C})]; (5,{B})
c []7J- [(57{A70})]5J— [(57 {AvB>C})]§(i1{B7C})
D[]+ [(5,{4,C,D})]; (5,{D}) [(5,{4,B,C, D}); (5,{B,C,D})
tO tq to t3 t4 t5

Fig. 1.

State-based synchronization of an Atomic Register with 4 replicas A, B,C,D € replicald. Only the current proposals and

(proposedV alue, proposedCerti ficate) are shown for brevity. Version and round of the proposedCerti ficate are not shown as they stay always

the same in this example.

the root hash is sent and compared, which limits the net-
work usage. If the states differ, the protocol descends in the
tree looking for the mismatching hashes to find out which
registers must be synchronized. By using a state-based
approach, rather than the operation-based approach of Op-
erational Transformation [36], operation-based CRDTs [34],
or blockchains [6], we only need to store the current state
together with some metadata. There is no need to store the
full log of all operations to later convince replicas that were
temporarily offline of the new state. Replicas also do not
need to keep track of the state of other replicas, or which
messages are already received by which replica [37].

The replicas execute a Gossip protocol to exchange their
current state with each other. Each time a new state is
received, the local state is merged with the remote state.
An example of this process is shown in Fig. 1. There are
four non-Byzantine replicas with an empty set of proposals.
Each proposal lists the value and the set of signatures of the
replicas that voted for that proposal. The scenario starts with
replica A proposing a new value. The state is replicated to
the other replicas randomly, and all replicas collect the votes
in the set of signatures.

3.2.2 Reading and writing

The GET operation will return the currently accepted value.
This request is always executed on the local replica and does
not involve any network requests.

The SET operation will propose a new value to the other
replicas. This value is not immediately visible via the GET
operation, first consensus will have to be reached by at least
a supermajority of the replicas. The replica that wants to
set a new value, can add the value to round 0 with his
vote. Replicas are only allowed to vote once in each round
for each version, so if the replica already voted for another
value in that round, it will have to wait until consensus is
reached for the current set of proposals, and propose the
new value for the version after it.

3.2.3 Consensus

The MERGE will combine the state of the same register from
two different replicas. The detailed specification of MERGE
is depicted in Fig. 2. This MERGE operation gets as input
the state of another replica and advances the current local
state. The new value will be the value associated with the
highest version number. Since each accepted value is always
accompanied by a commit certificate which is signed by a
supermajority of the replicas, it can be accepted without the

need to verify intermediate versions. Proposals that belong
to a smaller or equal version than the currently accepted
value can be discarded. The new proposals are the union
between the local and received proposals at each round
of the proposals. However, instead of simply taking the
union, a replica will first verify if the newly received state is
actually valid. For example, a new round can only be started
when a supermajority of the replicas voted for the previous
round, but no single value reached a supermajority.

Honest replicas will always vote for the value with the
most votes in round 0. If a round has reached a super-
majority of votes for a single value, then no new round
can be started anymore, and the replicas will start creating
a new proposed commit certificate. If a supermajority of
the replicas have voted, but not a single value reached a
supermajority, a new round is started and all replicas can
vote again in this new round. To ensure rapid convergence,
the replicas will vote on the current winner in round 0. This
selection procedure is shown in Fig. 3. Because each replica
might have different views on the current set of votes in
round 0, there can still be multiple values in the next round
without any supermajority for a single value. Another factor
is Byzantine nodes trying to halt the system, by voting not
according to the rules. However, eventually the view of all
the replicas on the votes in round 0 will become the same,
and the winning value can be chosen unanimously. We will
prove the correctness of this in Section 3.3.

Once a replica observes that a supermajority of the repli-
cas supports a single value, it starts working on a proposed
certificate to determine if at least a supermajority of the
replicas also knows about this. In the example in Fig. 1,
at t3 both replica B and replica D observe a supermajority
for value 5, and they start creating a new proposed commit
certificate. At t5, replica D has a proposed commit certificate
signed by a supermajority of the replicas. This means that
the new value 5 can be committed. The proposed com-
mit certificate becomes the new commit certificate and the
proposals are removed. When another replica now receives
the state of replica D, that replica will notice that it has
a value associated with a valid commit certificate with a
larger version number as his own. Therefore it will accept
this new value and remove all of its own proposals and
proposed certificate if any.

3.2.4 Optimistic fast path

For brevity, we did not show the actual verification of
signatures in Fig.2. However, in the basic protocol, each

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. X, MONTH YEAR 5
1: initial state
2 REPLICA_ID
3 QUORUM > QUORUM =n — f
4: value < L
5: certificate < L > (version € Integers,round € Integers,votes € P({REPLICA_ID}))
6 proposals < [| > round — (value — P({REPLICA_ID}))
7 proposedV alue < L
8 proposedClertificate < L > (version € Integers,round € Integers,votes € P({REPLICA_ID}))
9 byzReplicalds < () > P({REPLICA_ID})

10: procedure MERGE(remote)

11: if remote.certificate.version > certificate.version then > accept newer committed values
12: value < remote.value; certificate < remote.certificate
13: proposals < []; proposedV alue < L; proposedCertificate < L
14: for V round; € remote.proposals do
15: if round; > 0 A round; & proposals then > detect start of illegal rounds
16: if Y~ SIZE(remote.proposals[round; — 1][v]) < QUORUM

V 3 v € remote.proposals[round; — 1] : SIZE(remote.proposals[round; — 1][v] \ byzReplicalds) > QUORUM then
17: byzReplicalds + byzReplicalds U {remote.REPLICA_ID}
18: break
19: proposals[round;] < proposals[round;]\/ remote.proposals[round;] > merge proposals
20: if 3id : id € proposals[round;][vi] A id € proposals[round;][v2] A v1 # vz then > detect duplicate votes
21: byzReplicalds + byzReplicalds U {id}
22: for V v € proposals|[round;] \ GET_POSSIBLE_WINNING_VALUES(proposals|0..round;]) do > detect illegal votes
23: byzReplicalds <+ byzReplicalds U proposals[round;][v]
24: if “HAS_VOTED(proposals[round;]) then > cast vote for round proposal
25: v <— GET_WINNING_VALUE(proposals)
26: proposals[round;|[v] <— proposals[round;|[v] U {REPLICA_ID}
27: if proposedCertificate # L A proposedCertificate.round < SIZE(proposals) — 1 then
28: proposedV alue < L; proposedCertificate <— L
29: if remote.proposedCertificate # 1 then
30: if remote.proposedCerti ficate.round > SIZE(proposals) then > reject start of illegal proposed certificate
31: byzReplicalds < byzReplicalds U {remote. REPLICA_ID}
32: else if remote.proposedCerti ficate.round = SIZE(proposals) — 1 then
33: if SIZE(proposals|last Round][remote.proposedV alue]) < QUORUM then
34: byzReplicalds < byzReplicalds U {remote. REPLICA_ID}
35: else if proposedCertificate # L then > merge proposed certificates
36: proposedCertificate.votes <— proposedCertificate.votes U remote.proposedCertificate.votes
37: else > accept newer proposed certificate
38: proposedV alue < remote.proposedV alue; proposedCertificate <— remote.proposedCertificate
39: if proposedCertificate # 1 then
40: if SIZE(proposedCertificate.votes \ byzReplicalds) > QUORUM then > commit
41: value < proposedV alue; certificate < proposedCertificate
42: proposals < []; proposedV alue < L; proposedCertificate + L
43: else if “HAS_VOTED(proposedCertificate) then > cast vote for new commit certificate
44: v < GET_WINNING_VALUE(proposals)
45: if v = proposedV alue then
46: proposedClertificate.votes < proposedCertificate.votes U {REPLICA_ID}
47: else > start new round
48: proposals[last Round + 1][v] + {REPLICA_ID}
49: else if) SIZE(proposals[lastRound][v] \ byzReplicalds) > QUORUM then
50: if 3 v : SIZE(proposals[last Round][v] \ byzReplicalds) > QUORUM then > start vote for new commit certificate
51: proposedV alue < v
52: proposedCertificate < (certificate.version + 1,lastRound, {REPLICA_ID})
53: else > start new round
54: v <— GET_WINNING_VALUE(proposals)
55: proposals[last Round + 1][v] - {REPLICA_ID}

56: end procedure

Fi

g. 2. Consensus protocol for the Atomic Register.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. X, MONTH YEAR 6

—_

procedure GET_WINNING_VALUE(proposals)

2: for V round; € proposals do
3: if 3 v € proposals[round;] : (Y v' € proposals[round;] Av # v :
SIZE(proposals[round;][v] \ byz Replicalds) > SIZE(proposals[round;][v'] U byzReplicalds)) then

4: return v

5: return v € proposals|lastround) : (V v' € proposals|lastround] Av # v :

SIZE(proposals|lastround][v] \ byzReplicalds) > SIZE(proposals|lastround][v’] \ byzReplicalds))

6: end procedure

7: procedure GET_POSSIBLE_WINNING_VALUES(proposals)

8: if 3 id : id € proposalsllast Round][vi] A id € proposals[last Round][va] A v1 # v2 then

9: return {v € proposals[0]}
10: else
11: return {GET_WINNING_VALUE(proposals)} U {v1 € proposals|last Round] : SIZE(proposals[last Round][vi]) > f}

12: end procedure

Fi

g. 3. Selection procedure for the current value to endorse.

time a new signature is received, it needs to be verified.
This can become quite costly, and therefore WebLedger
will use an optimistic approach. WebLedger will delay the
verification of any incoming signatures and just accept
and replicate them, until a decision needs to be made,
such as starting a new round or starting to create a new
proposed commit certificate. Only then, all signatures will
be verified in one batch. If all of the signatures are valid,
the protocol can continue as normal. If there are invalid
signatures, then those will be removed and WebLedger will
continue to collect more signatures. However, WebLedger
will remember this occurrence and from now on verify all
signatures once they come in. Once consensus is reached for
this version, WebLedger will move back to the optimistic
fast path. This hybrid approach enables very fast consensus
when all replicas are honest, while gracefully degrading to
a slower, more costly protocol that can detect which replicas
are actively acting Byzantine.

3.3 Correctness

This section sketches the proof that the algorithm provides
safety and liveness. The protocol described before guaran-
tees both safety and liveness when there are at least 2f + 1
honest replicas available.

3.3.1 Safety

The safety property is defined as non-divergence.

Lemma 1 (Non-divergence). Let R be a cluster of n replicas
with f Byzantine nodes and with n > 3f. If replicas
R1, Ry € fR are able to construct commit certificates ¢,
and c; for value v; and vs respectively with ¢1 yersion =
€2 version, then vy = va.

We will first prove this for the simplified case when both
commit certificates belong to the same round, and we will
then prove that once a commit certificate can be constructed,
no more rounds can be started.

Lemma 2. If replicas R, Ry € R are able to construct com-
mit certificates ¢; and ¢y for value v; and v, respectively
with €1 yersion = €2 version aNd €1 round = €2 round, then
V1 = V2.

Proof: Assume two different replicas R and Ry have
constructed a commit certificate ¢; and ¢y for value v and

V2 reSpeCtiVely with ¢1 yersion = €2 version and €1 round =
€2 round- They are constructed in the same round, so of the
n possible votes, at least n— f replicas have voted on vy, and
at least n — f replicas have voted on v. Honest replicas will
never vote twice in the same version and round. Therefore
at least n — 2 f honest replicas have voted on v; and n — 2 f
different honest replicas have voted on vs. In total we have
(n—=2f)+(n—2f)+f = 2n—3f replicas that have voted. We
defined n > 3 f + 1 before, which gives 2n —3f > 3f +2 >
n-+1 replicas. This is a contradiction, there need to be at least
n + 1 replicas to construct two such certificates for different
values, however, we only have n replicas. So the two values
vy and vy have to be equal. O

Lemma 3. If replicas R, Ry € R are able to construct com-
mit certificates ¢; and ¢y for value v; and vy respectively
with C1 version = C2 versions then C1 round = €2 round-

Proof: Assume two different replicas 1 and R
have constructed a commit certificate ¢; and ¢y for value
v1 and vy respectively with ¢1 yersion = €2 version and
€1 round < €2 round- Since c; is accepted, at least n — f
replicas vote on the proposed commit certificate and at least
n — f replicas voted on v; in round 71 round. The fact that
n — f replicas voted on the proposed commit certificate
means that at least n — 2f honest replicas observed n — f
votes for v;. Of those votes, at least n — 2 f are coming from
honest replicas. The only way to now construct a commit
certificate co for vs is to start a new round. To start a new
round, a replica needs to not have voted for the proposed
commiit certificate ¢;, and observe a different winning value
vy. Yet, at least n — 2 f honest replicas observed that at least
n — 2f honest replicas think that v, is the winning value.
This leaves only 2f replicas who can prefer another value
V2. By definition we have n > 3 f 4 1. This means that in the
worst case, f+1 honest replicas observe f+1 honest replicas
thinking v is the winning value, together with f Byzantine
replicas. Value vy has only 2 f supporting replicas, which is
not enough to start a proposed commit certificate. So, at least
one replica currently supporting v; needs to switch votes in
a future round. However, once a replica has voted for a
proposed commit certificate, it will not change their opinion
unless it is convinced that a new valid round is started. So
once n — 2 f honest replicas are locked on a value, by voting

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. X, MONTH YEAR 7

on a proposed commit certificate, it is impossible that a valid
new round can be started. O

3.3.2 Liveness

The liveness property is defined as termination. When a
new value is proposed, eventually the protocol will end
and a valid commit certificate is created for a new value.
Safety is always chosen over liveness. When there are not
enough honest replicas online to reach a supermajority, no
consensus can be reached and the protocol will simply block
and wait for more votes. However, all those replicas do
not need to be online at the same time, since the state is
replicated to all available replicas over time, and votes can
be verified by all replicas in the end.

Lemma 4 (Termination). If an honest replica R € R creates a
proposal p for a new value v, eventually the replica will
be able to construct a valid commit certificate c.

Lemma 5. If only a single replica R € R creates a proposal
p for a new value v, eventually the replica will be able to
construct a valid commit certificate c.

Proof: As there is only a single proposed value, all
honest replicas who observe this will cast their vote for that
value. Eventually, one replica will observe n — f votes for V
and a new proposed commit certificate will be constructed.
Eventually, n — f votes will be cast to this proposed commit
certificate and a valid commit certificate c is constructed and
v is committed. O

Lemma 6. If x replicas Ry, € R create proposals pi..,
for values v;.,, and no Byzantine replicas vote twice
in the same round, eventually the replica will be able to
construct a valid commit certificate c.

Proof: Either a single value reaches a quorum, in
which case the previous lemma holds. Or a split vote occurs
and a new round will be started after n — f votes are
observed. All replicas will base their vote for this new
round on the winning value that they observed from round
0. At least n — f votes are known, and only f votes are
still unknown. As long as not all votes are known to all
voting replicas, the winning value might change. In each
new round, either an unknown vote stays unknown, or
it becomes known. In the former case, then the currently
known votes will all be the same, and a proposed commit
certificate can be started. In the latter case, one extra vote is
known, which might again result in the system ending up
in a split vote, and a new round will be started. However,
this last case can only happen at most f times. After f + 1
rounds, all replicas will have voted in round 0, and every
replica will observe the same winning value, and a commit
certificate can be created. O

Lemma 7. If x replicas Ry, € R create proposals pi..,
for values v;.,, eventually the replica will be able to
construct a valid commit certificate c.

Proof: If no Byzantine replicas vote twice in the same
round, or only a single value is proposed, the previous two
lemmas hold. If a split vote occurs, a new round will be
started after n— f votes are observed. f of those votes might
belong to Byzantine replicas who can vote for multiple
values. As a new round is only started after n — f votes,

a least n — 2f honest votes are observed. No Byzantine
replica can send conflicting votes to any of those n — 2f
honest replicas, as otherwise those replicas will detect this
conflicting vote and exclude the Byzantine replica. If this
happens repeatedly, all Byzantine replicas are excluded and
the previous lemma holds. Moreover, no Byzantine replica
can continue to vote on values that are not the winning
value. Each replica is only allowed to vote on the winning
value or any other value that has at least support from f+1
replicas in the previous round. All honest replicas converge
to a single value, even with Byzantine replicas supporting
other values. Because the protocol only looks to the first
round, or the first few rounds when Byzantine replicas vote
twice, to determine the winning value. In the rounds after
that, the f Byzantine replicas can support a different value,

but if they do, they will be excluded as f < f + 1.
This means that after at most 2 f + 1 rounds, a proposed
commit certificate can be started, which will be committed.
|

4 ARCHITECTURE AND IMPLEMENTATION

This section describes the architecture, deployment, and im-
plementation of WebLedger. This middleware architecture
is key to support the BFT consensus and synchronization
protocol described in the previous section. The middleware
is fully web-based and can execute in any recent browser
without any plugins. This section first describes the overall
architecture. Then it explains our use of aggregate signa-
tures using BLS to reduce the size of the ledger. The last
subsection lists several performance optimization tactics.

4.1 Overall architecture

The WebLedger middleware architecture consists of five
main components (Fig. 4): (i) a public interface that offers an
API for developers, (ii) a peer-to-peer network component to
communicate directly with other browsers, (iii) a consensus
component to handle the consensus protocol described in
the previous section, (iv) a membership component to handle
all cryptographic operations, and (v) a store component to
save all state to persistent storage.

(i) Public interface. This component provides an API to
application developers to use this middleware. It provides
four functions to modify the application state:

e GET (key) returns the current value of the atomic reg-
ister at the given key,

e SET (key, value) submits a proposal to update the
atomic register at the given key,

e DELETE (key) deletes the atomic register at the given
key. A tombstone is kept for correct replication,

e LISTEN (key, callback) supports reactive pro-
gramming by calling the callback with the new value
each time a new value for the register is confirmed by
the network.

Apart from those functions, the middleware also provides a
constructor function to initialize the middleware by passing
the following configuration as parameters:
o the list of all members of the network, together with
their public key,
o the private key of the replica,

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. X, MONTH YEAR 8
% Thread = WebWorker B - =
rowser I Membership ¢
rereeeeeee e, Aooleat = Consensus g Q
: Signaling server : pplication CRDT BFT —

&ﬁ&

A

Js

WebQRTC

P2P Network

Public Interface
|| Browser

Store Q

m Hash |

| Cachehl

| € IndexedDB

Fig. 4. Browser-based architecture of WebLedger.

o the URL to the signaling server to set up the peer-to-
peer connections (explained in Section 4.1, § (i),
e an access-control callback to verify state-changes.

This access-control callback is called before voting for a
new proposed value, with both the old and new values as
arguments. It should return a boolean whether to allow
this change or not. This callback enables the implementation
of basic access control policies on the values. One example
is to embed the public key of the owner into the value and
requiring each new value to be signed by the owner. This
value can only be changed by the owner, and also supports
passing ownership by changing the embedded public key.

(ii) Peer-to-peer network. The P2P Network component
manages the peer-to-peer network and is responsible for
the replication of the state-based CRDTs. Many browser-
based replicas are connected to each other using WebRTC
(Web Real-Time Communications) [38]. WebRTC enables a
browser to communicate peer-to-peer. However, to set up
those peer-to-peer connections, WebRTC needs a signal-
ing server to exchange several control messages. Once the
connection is set up, all communication can happen peer-
to-peer, without a central server. Another WebRTC peer-
connection can also be used as a signaling layer, so once
a replica is connected to another one, it can also connect
to all of its peers, without the need of a central signaling
server. In our adversary model, this server is assumed to
be trusted. If this signaling server would be malicious, the
safety of the system is not endangered as no actual data is
sent to this central server. However, some peers might not
be able to join the network and the required supermajority
might not be reached, which violates liveness. The use of
multiple independent signaling servers can lower the risk
of this happening.

(iii) Consensus. The Consensus component handles the
consensus protocol described in Section 3. It maintains a
Merkle-tree of all atomic registers and uses the state-based
CRDT framework OWebSync [22] to replicate the local state
to other replicas using the P2P Network component. The
Merkle-tree is constructed using the Blake3 [39] crypto-
graphic hash function.

(iv) Membership. The Membership component contains all
cryptographic material and is responsible for the signing
and verification operations. The Consensus component uses
this for all cryptographic operations. We implemented two
different versions of this component, one using ECDSA for
signatures using the built-in WebCrypto [40] browser API
(not shown in Fig. 4), and a second implementation using

an aggregate signature scheme called BLS [41]. Section 4.2
provides more details about the BLS implementation.

(v) Store. At last, the Store component saves all state
to the IndexedDB [42] database. IndexedDB is a key-value
datastore built inside the browser. Each atomic register and
the Merkle-tree are serialized to bytes and stored here under
the respective key. This enables users to close the browser
and continue afterward without losing the current state.

4.2 Aggregate signatures using BLS

The consensus protocol in Section 3 is resource-intensive
with respect to aggregation and verification of digital sig-
natures. Signatures must be continuously collected and veri-
fied. This means, in every intermediate state of a transaction,
each party needs to keep track of all incoming signatures
and verify them to prevent malicious scenarios. Persis-
tence, management, and transmission of these signatures are
costly, especially in a browser-based setting. Therefore, our
protocol requires short and compact signatures to reduce
storage and network footprint.

Boneh-Lynn-Shacham (BLS) [41] presented a signature
scheme based on bilinear pairing on elliptic curves. The size
of a signature produced by BLS is compact since a signature
is an element of an elliptic curve group. The aggregation
algorithm [43] outputs a single aggregate signature as short
and compact as the individual signatures, unlike other ap-
proaches that rely on ECDSA or DSA (e.g. Schnorr [44]).

Other state-of-the-art BFT systems such as SBFT [45]
and HotStuff [14] also use aggregate or threshold signa-
tures. However, they use it in a different way. They let the
leader compute the aggregate signature. WebLedger uses
a different approach, once a proposed commit certificate
has reached a supermajority of the votes, any replica can
aggregate these into one single aggregated BLS signature.

Efficient aggregation. The protocol described in Section 3
performs a considerable number of signature aggregations.
But the standard scheme is vulnerable to rogue public-key
attacks. The state-of-the-art approach [46] to mitigate such
attacks is to compute (t1, ..., tn) < H1(pki, ..., pky) for each
Agg invocation and compute o + [, of', where pk; is
the public key of replica 7, H; is a hash function, and o; is a
signature produced by replica . Although the ¢; values can
be cached, the computation of o would be costly. Moreover,
Agg does not take as input the same set of public keys at
different states of a transaction in our consensus protocol.
Therefore, we distribute the computations by moving the
calculations of the ¢; and ¢! values to the signing parties,

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. X, MONTH YEAR 9

Go and G, are two multiplicitive cyclic groups of prime
order ¢. Hg : {0,1}* — Gg and H; : {0,1}* — Z, are hash
functions viewed as random oracles.

1) Parameters Generation: PGen(k) sets up a bilinear group
(¢, Go,G1,Gy, e, go, g1) as described by [46]. e is an effi-
cient non-degenerating bilinear map e : Go xG; — Gy. go
and g are generators of the groups Gg and G;. It outputs
params < (q,Go,G1, Gy, €,90,91)-

2) Key Generation: KGen(params) is a probabilistic algo-
rithm that take as input the security params, generates
sk < 7, computes and sets pk + g¢;*, and outputs
(sk, pk).

3) Signing: Sign(sk,m) is a deterministic algorithm that
takes as input a secret key sk and a message m. It
computes t < H;(pk), and outputs o < Ho(m)*** € Gy.

4) Key Aggregation: KAgg({(pk;,)} ;) is a deterministic
algorithm that takes as input a set of public key pk and
the multiplicity r pairs. It computes ¢; < Hi(pk;), and
outputs apk + [[1_, pki ™.

5) (Multi-)Signature Aggregation: Agg(o1,...,0,) is a deter-
ministic algorithm that takes as input n signatures. It
outputs o < [["_; 0;.

6) Verification: Ver(apk, m,o) is a deterministic algorithm
that takes as input aggregated public keys apk € G, and
the related message m and signature o € Gg. It outputs

e(g1,0) = e(apk, Ho(m)).

Fig. 5. Formal specification of the BLS signature scheme.

and as a result, these computations are performed once.
Now, any replica can run Agg by only computing o;...0p,.
The security properties of BLS remain intact [46], and we
obtain more efficient aggregations at scale. For the inter-
ested reader, we provide the mathematical background and
formal specification of our optimized BLS scheme in Fig. 5.

4.3 Performance optimization tactics for browsers

This section contains four important performance optimiza-
tions to host this middleware inside web browsers at scale.

Polyglot middleware. WebAssembly [47] is a binary in-
struction format that addresses the problem of safe, fast, and
portable low-level code on the Web. Higher-level languages
such as C, C++, and Rust can be compiled to WebAssembly
and can be executed in a modern browser on any platform
independent from the underlying hardware. WebAssembly
executes significantly faster than JavaScript [48], however,
it is not as fast as native code [49]. We used WebAssembly
for two key components that are computationally intensive.
These components are the hashing component to build
the Merkle-tree and the BLS module for aggregate signa-
tures. They are implemented in the Rust programming lan-
guage [50] and C respectively, and they are compiled to We-
bAssembly to run inside a browser. Besides the performance
improvement of WebAssembly over JavaScript, using Rust
and C also enabled us to make use of well-tested libraries
(BLAKES3 [51] and blst [52]) instead of implementing these
components ourselves in JavaScript.

Parallellization using Web Workers. Web Workers [53] are
separate browser threads, which enable us to run compu-

tations off the main thread to keep the User Interface re-
sponsive. The middleware is distributed over four different
threads. The Public interface and P2P Network components
run on the main thread together with the application. The
P2P Network component is also located on the main thread
because WebRTC is not available inside Web Workers. The
other three components: Consensus, Membership and Store,
are each located in a separate Web Worker. This enables
long-running computations, for example, BLS-signature ver-
ification, to run in a separate thread without blocking con-
current operations in the other threads.

Caching. Caching is used in several places for perfor-
mance reasons. The most important place is in the Member-
ship component in WebAssembly. While WebAssembly itself
is fast, the boundary between JavaScript and WebAssembly
is not. Function calls between the two environments can
only use numbers directly. Any other data structure has
to be serialized to bytes and be allocated a spot in the
WebAssembly memory buffer. In WebAssembly, these bytes
can be decoded to the appropriate Rust data structure. For
this reason, all cryptographic material such as public keys
and the private key are passed to WebAssembly at initializa-
tion, avoiding this costly transfer for subsequent operations.
In the Consensus component, all CRDT and Merkle-tree
structures are cached in memory. As such, a costly fetch
from disk and decoding from bytes can be avoided.

Batching of writes for IndexedDB. The last important op-
timization concerns IndexedDB [42]. IndexedDB is an in-
browser database for structured data supporting fast reads
and lookups by using indexes. We found that when too
many write requests are sent to IndexedDB, latency signif-
icantly starts to increase up to one second or even more.
When one atomic register is updated, also all intermediate
nodes until the root node of the Merkle-tree are updated.
This is due to the tree-shaped structure of the Merkle-tree.
So, one write somewhere down the tree, leads to a cascading
of writes, and every write causes the root node to be written
as well. To reduce the high latency, we batched all writes to
IndexedDB in-memory in the Store component. If multiple
writes for the same key happen in the same batch, only
the last one is executed. At fixed intervals of 5 seconds, the
whole batch is written to IndexedDB. Since many duplicate
writes are now avoided, the number of writes is reduced
significantly. This solved the problem of high read latency.
As not everything is immediately written to disk, failure can
happen and lead to data loss. For updates received through
the P2P network, this is not a problem as those updates can
be synchronized again later since the Merkle-tree will detect
the missing updates. Local update operations by the user on
this replica, are immediately written to disk and bypass the
write-batching to avoid data loss.

5 EVALUATION

We validated the WebLedger middleware with the loyalty
points use case. The first section presents this validation.
Next, we present four different benchmarks with different
scales. The first benchmark shows the performance results in
the optimistic scenario with no network failure or Byzantine
failures. The second benchmark evaluates the performance
in a more realistic scenario with some network failures.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. X, MONTH YEAR 10

The third benchmark evaluates the performance in the pres-
ence of a Byzantine replica. The last benchmark compares
two different implementations of WebLedger. The default
version uses BLS signatures which supports signature ag-
gregation using WebAssembly as explained in Section 4.2.
The other version uses ECDSA signatures using the built-in
native WebCrypto [40] APIs from the browser.

5.1 Validation in the loyalty points use case

The deployment of the loyalty points use case consists
of three services: a web application running in a browser
for each merchant, a web server to serve the static web
application files, and a signaling server to set up WebRTC
peer-to-peer connections between the browsers. The web
server is optional. Every merchant can also store those
application files themselves and load them from their local
file system. The signaling server is a trusted component.
However, if trust is not present, you can set up multiple
signaling servers to reduce potential misbehavior. No actual
data is sent to the signaling server. It is only used to discover
other peers on the network. To have a baseline, we compare
WebLedger to two other existing state-of-the-art systems for
BFT consensus: BFT-SMaRt [10] and Tendermint [11], [28].
Test setup. To test the performance of the middleware,
we implemented the use case and deployed it on the Azure
public cloud. We used 21 VMs (Azure F8s v2 with 8 vCPUs
and 16 GB of RAM) with one VM acting as a central server
running the web server and signaling server. The other VMs
are running Chrome browsers inside a Docker container.
Each of those VMs holds one to five browser instances
for different scales of the benchmarks. To simulate a truly
mobile environment, the network is delayed to an average
latency of 60 milliseconds using the Linux tc tool [54],
which simulates the latency of a 4G network [55]. Every
test is executed 10 times to ensure the results are reliable.
We are interested in the time it takes to confirm a
transaction, experienced by the browser that submitted the
transaction. Each transaction is a group of loyalty points
being changed from owner. For example, a merchant gives
some loyalty points to a customer or a customer redeems
their loyalty points with a merchant. In the evaluation, the
browser clients will do one transaction per second. This
throughput is more than enough for the local community-
scale use cases we envision. We compare the latency, net-
work bandwidth, and disk usage with a different number of
browsers. We show a boxplot of the latency results instead
of only the average, as all users should experience fast
confirmation times, and not only the average user [56].

5.2 Optimistic scenario

In the optimistic scenario, every replica is honest and no
replicas fail, meaning that the fast path can be used. One
single aggregate signature is verified before each decision,
avoiding costly signature verifications after every message.
As every replica is honest, this aggregate signature is correct
and the new value can be accepted by all replicas.

Fig. 6 shows the latency for the different technologies.
For the use case of loyalty points, transactions must be con-
firmed fast, as people are waiting at checkout to receive or
redeem loyalty points. WebLedger can confirm transactions

Latency
4s

3

2 % ;

I S

0 T T — T — T — T ‘ T — 1

20 40 60 80 100
replicas
B WebLedger Tendermint B¥ BFT-SMaRt

Fig. 6. Latency in the optimistic scenario with no failures.

Bandwidth [Mbit/s]

4
2
! |E
0 : 3 S
20 40 60 80 100
replicas
B WebLedger Tendermint BFT-SMaRt

Fig. 7. Network usage in the optimistic scenario with no failures.

within 4 seconds, even with a network of one hundred
browsers. BFI-SMaRt can confirm transactions within half
a second. This is because all replicas communicate directly
with each other. However, having all replicas directly con-
nected to each other is not realistic in a mobile peer-to-peer
network. In contrast, WebLedger and Tendermint use Gos-
sip and need multiple hops before all replicas are reached.
This also causes the increased latency. Furthermore, BFT-
SMaRt uses HMAC to sign requests, which are an order of
magnitude faster than the asymmetric signatures used in
WebLedger and Tendermint. We can see a similar pattern in
the bandwidth requirements shown in Fig. 7. In the large-
scale scenario with 100 browsers, WebLedger uses less than
3 Mbit/s, which is acceptable for a typical mobile network.

5.3 Realistic scenario

The same benchmark is now repeated with 25% of the
replicas failing during the benchmark. A failure is simulated
by dropping all network packets to and from that replica.
Replicas fail one by one, with a 5-second delay between

Latency
25s

20

10

0.-; '; '% E; E; .
20 40 60 80 100
replicas
B WebLedger Tendermint B¥ BFT-SMaRt

Fig. 8. Latency in the realistic scenario with network failures.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. X, MONTH YEAR 11

Latency
6s
4 o)
2 T Eg i
=T L =
0 T T T T T T 1
20 40 60 80 100
replicas
B WebLedger % WebLedger Byzantine

Fig. 9. Comparison of the latency in the normal scenario with a scenario
where a Byzantine replica tries to halt the network.

each failure. As all systems are Byzantine fault tolerant, they
should be able to tolerate up to 33% of the replicas failing or
acting Byzantine.

Fig. 8 shows the latency in this scenario. WebLedger
is not impacted much by the failing replicas, and can still
confirm transactions within 5 seconds. The impact on Ten-
dermint is also small, but latency is doubled to about 10
seconds. BFT-SMaRt however needs to use a costly leader
election protocol when the current leader fails. This process
takes some time, during which no transaction can be com-
mitted. Once a leader is chosen, the same fast performance
can be achieved again. This behavior is clearly visible in
Fig. 8. The median latency of BFT-SMaRt is not affected
by the failures, however, the tail latency increases to 27
seconds for the scenario with 80 replicas. It cannot handle
the case with 100 replicas. BFT-SMaRt is unable to handle
large network sizes when the latency between the nodes
is higher than usual, e.g. in geo-distributed systems or on
mobile networks. This has been shown in the literature
before [57]. Tendermint does have a leader, but it is rotated
round-robin all the time. This makes the failure of a leader
less severe, as a new one will quickly be elected anyway.

5.4 Byzantine scenario

For WebLedger, we performed an extra benchmark with
Byzantine replicas. As long as the honest replicas are still
using the optimistic fast path, the Byzantine replicas will
send extra invalid signatures. As the signatures are only
verified when a supermajority is reached, the honest repli-
cas only realize this at the end, and they cannot find out
which replicas are Byzantine. Once the optimistic fast path
is disabled, the signatures are verified for every message,
so malicious replicas can be detected and excluded from
the network. In this case, the Byzantine replicas keep the
signature intact to avoid being detected. However, they will
try to slow down the consensus by not voting themselves.
The latency in this Byzantine scenario is shown in Fig. 9.
WebLedger can handle Byzantine replicas very well for
smaller networks, however, for networks of size 100 repli-
cas, the tail latency becomes 7 seconds. Which might already
be quite high for the use case of loyalty points. We did
not test the effect of Byzantine replicas for BFI-SMaRt or
Tendermint. As they do not use a fast path when everyone
is honest, the impact is less. However, if the current elected
leader happens to be Byzantine, it can delay the consensus
until some timers end and a new leader is elected [58].

Latency
80s I
10 . :
1 = C .
0 zl— T T T T 1
20 40 60 80 100
replicas
B WebLedger BLS 2 WebLedger ECDSA

Fig. 10. Comparison of the latency in the normal scenario between the
use of BLS signatures in WebAssembly and the ECDSA signatures the
browser provides.

Disk usage
—=— WebLedger BLS
> M]Z ngLgdgg ECDSA
3
2
1
0 T T 1 T 1
20 40 60 80 100
browsers

Fig. 11. Average disk usage for WebLedger.

5.5 Benefits of BLS vs ECDSA

WebLedger uses BLS signatures to limit both the overhead
of signature verification and storage. With BLS, only one
aggregate signature of the ¢ replicas needs to be verified,
compared to g separate signature verifications for ECDSA.
Fig. 10 compares the latency of the default implementation
using BLS signatures with an alternative implementation
using ECDSA signatures. The ECDSA implementation per-
forms well for small networks but needs too much time in
the larger networks with 80 and 100 replicas.

The BLS signature verifications are performed using
WebAssembly. While WebAssembly can be much faster than
JavaScript, the resulting WebAssembly code is still an order
of magnitude slower compared to a native variant in x64
assembly (which cannot be executed on the web). For the
ECDSA signatures on the other hand, we used the built-
in Web Cryptography API [40]. These are implemented
in the browser using native functions. But even with the
more optimized implementation of ECDSA, the version of
WebLedger using BLS and WebAssembly is much faster for
larger networks. In the future, browsers could add the BLS
signature scheme natively, which would result in even better
performance for WebLedger.

Fig. 11 shows the storage usage for both implementa-
tions of WebLedger. BLS improves disk usage about 20 times
for the scenario with 100 browsers. Both implementations
need less than 5 MB to store 1000 tokens. This disk usage
does not increase over time, as only the current value and
proposals are stored. We do not store a chain of all trans-
actions that have happened so far. This is a big difference
with blockchains that grow in size with every transaction
that is executed and stored in the blockchain. This makes
our approach feasible for resource-constrained devices that
do not have hundreds of gigabytes of storage capacity to
store a full blockchain.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. X, MONTH YEAR 12

5.6 Discussion and conclusions

We have shown that WebLedger can be used for the loyalty
points use case with up to 100 different merchants, even
when some of them are acting maliciously. WebLedger can
achieve similar latencies as other Gossip-based BFT proto-
cols, such as Tendermint. Traditional leader-based BFT pro-
tocols, such as BFT-SMaRt, are much faster in the optimistic
setting. However, in the more realistic and mobile environ-
ment we envision, this dependability on a long-term leader
results in long tail-latencies when that leader fails. WebLed-
ger does not use a leader and is especially robust against
network and node failures, which are typical in a mobile
setting. BFT-SMaRt also requires that the leader is connected
to all other replicas, and at least a supermajority of the
replicas need to be online at the same time. WebLedger does
not impose this, consensus can be reached gradually over
time, as the full state of the proposals and votes propagates
through the network. WebLedger can confirm transactions
fast, in the order of seconds, without needing a complex
back-end setup or wasting a lot of energy. WebLedger has a
small storage footprint due to its state-based nature.

6 RELATED WORK

Several client-side frameworks for data synchronization be-
tween web applications exist: Legion [19], Yjs [20], [59], Au-
tomerge [21], and OWebSync [22]. They make use of various
kinds of Conflict-free Replicated Data Types (CRDT) [34]
to deal with concurrent conflicting operations, and can
synchronize data peer-to-peer. They are easy to set up and
only require a browser and a peer-to-peer discovery service.
However, they assume trusted operation as the default set-
ting. Some work has been done in a semi-trusted setting [60],
[61]. None of them can tolerate Byzantine parties.

Open or permissionless blockchains such as Bitcoin [6]
and Ethereum [62], [8] allow everyone to participate and
use Proof-of-Work (PoW) to reach agreement over the
ledger [63]. However, PoW has several flaws [64]. POW uses
a lot of processing power and energy [65] and performs
poorly in terms of latency. It assumes a synchronous net-
work to guarantee safety. When this assumption is violated,
temporary forks can happen in the blockchain as liveness
is chosen over safety. Therefore PoW blockchains do not
offer consensus finality, instead one needs to wait for sev-
eral consecutive blocks to be probabilistically certain that
a transaction cannot be reverted. Blockchains require a lot
of storage space, as the full blockchain typically needs to be
stored on every node. Simplified Payment Verification (SPV)
mode [6] for clients can reduce the resource usage, at the cost
of decentralization. PoW gains its security from the fact that
one needs a lot of CPU power to control the network, which
is too costly for an attacker compared to the revenue for a
successful attack. Other variants of resource consumption
exist such as Proof-of-Space [66] or Proof-of-Storage [67].

ByzCoin [68] uses PoW for a separate identity chain
to guard against Sybil attacks but uses a BFT protocol to
actually order transactions. ByzCoin makes use of collective
signatures (CoSi) [69] and a balanced tree for the com-
munication flow. CoSi makes use of aggregate signatures
by constructing a Schnorr multisignature [44]. However,
CoSi needs multiple communication round-trips through

the peer-to-peer network to generate the multi-signature
and assumes a synchronous network.

Tendermint [11], [28], used in Cosmos [31], uses Proof-of-
Stake (PoS), where voting power is based on the amount of
cryptocurrency owned by each replica. Because block times
are short, in the order of seconds, there is a limited number
of validators Tendermint can have because finality needs to
be reached for each block. It is also not resistant to cartel
forming, which allows those with a lot of cryptocurrency to
work together to control the network.

Instead of reaching consensus between all the replicas
of the network, Stellar Consensus Protocol [70], [71] uses
quorum slices to reach federated Byzantine agreement in
an open network. Replicas should choose adequate quorum
slices for safety. However, today’s Stellar network is highly
centralized and many replicas use the same few validators.
Two failing validators can make the entire system fail [72].

Other protocols use a randomized approach. Ouroboros
[13], HoneyBadger [73] and BEAT [74] use distributed coin
flipping for consensus. HoneyBadger [73] also uses thresh-
old signatures [29] for censorship resilience. Algorand [12]
uses Verifiable Random Functions [75] to select a random
committee for the next round. Avalanche [15], [76] uses
meta-stability to reach consensus by sampling other replicas
without any leader. While Avalanche is lightweight and
scalable, it needs to be able to sample all other validators
directly. The number of connections one can open in a
browser without performance loss is limited. WebLedger
supports propagation of votes over multiple hops.

Permissioned blockchains such as Hyperledger Fab-
ric [27] have closed membership and often use a BFT con-
sensus protocol to order transactions. The first known BFT
protocol is Practical Byzantine Fault Tolerance (PBFT) [9].
Other protocols bring improvements to the original PBFT
protocol. Zyzzyva [77] uses speculative execution which
improves latency and throughput if there are no Byzantine
replicas. However, its performance drops significantly if this
premise does not hold. 700BFT [78] provides an abstraction
for these BFT algorithms. These protocols are targeting a
small number of replicas deployed on a local area network.
They generally work in two phases: the first phase guaran-
tees proposal uniqueness, and the second phase guarantees
that a new leader can convince replicas to vote for a safe
proposal. HotStuff [14] proposed a three-phase protocol to
reduce complexity and simplify leader replacement. This
makes HotStuff much more scalable. All of these algorithms
use a leader to drive the protocol. When the leader is ma-
licious, performance can degrade quickly [58]. GeoBFT [79]
is a topology-aware and decentralized consensus protocol,
designed for scalability in a geo-distributed setting.

Another approach is to use a trusted hardware compo-
nent [80], [81], [82], [83], [84]. These approaches are faster
and less computationally intensive but require specialized
hardware to be present. Moreover, trusted execution envi-
ronments have been broken in the past [85], [86], [87].

There are several proposals to improve the performance
and response time of Hyperledger Fabric. StreamChain [88]
reaches consensus over a stream of transactions instead
of blocks. FabricCRDT [89] uses CRDTs to support con-
current transactions to occur in the same block, using the
built-in conflict resolution of CRDTs to resolve the conflict

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. X, MONTH YEAR 13

automatically. Other approaches also borrow from CRDTs:
PnyxDB [57] supports commuting transactions to be applied
out-of-order. A novel design for gossip in Fabric [90] im-
proves the block propagation latency and bandwidth. While
these improvements make Hyperledger Fabric faster, none
of them try to reduce the infrastructure requirements to be
able to easily set up an untrusted peer-to-peer network.
The Bitcoin Lightning Network [91] or state channels for
Bitcoin [92] or Ethereum [93], [94], [95] are off-chain protocols
that run on top of a blockchain. A new state channel be-
tween known participants is created by interacting with the
blockchain. After its creation, participants can use this chan-
nel to execute state transitions by collectively signing the
new state. These transactions do not involve the blockchain
and have fast confirmation times and no transaction costs.
However, state channels assume all participants to be al-
ways online and honest. If this assumption is violated,
the underlying blockchain needs to be used to resolve the
conflict, or a trusted third party can be used [96]. WebLedger
uses a similar state-transitioning protocol where only the
latest collectively agreed state needs to be stored. However,
WebLedger can tolerate both failing and malicious replicas,
without resorting to a blockchain or a trusted third party.

7 CONCLUSION

In this paper, we presented WebLedger. A browser-based
middleware for decentralized, community-driven, web ap-
plications. WebLedger uses an optimistic, leaderless BFT
consensus protocol, combined with a robust and efficient
state-based synchronization protocol based on state-based
CRDTs and Merkle-trees. WebLedger uses an optimized
BLS scheme for efficient computation and storage of sig-
natures. It supports a client-centric, browser-based, state-
based, permissioned ledger with a low infrastructure and
storage footprint for small-scale, citizen-driven, networks.
WebLedger offers consistent and robust confirmation times
to achieve finality of transactions in the order of seconds,
even in failure settings and Byzantine environments. In
contrast with traditional blockchains, WebLedger does not
store a transaction log or blockchain, keeping the overall
storage footprint small.

REFERENCES

[1] T. Berners-Lee. (2017) Three challenges for the web, according to
its inventor. World Wide Web Foundation. [Online]. Available:
https:/ /webfoundation.org/2017/03 /web-turns-28-letter /

[2] (2020) About. Web3 Foundation. [Online]. Available:
https:/ /web3.foundation/about/

[3] H. Farahmand, “Guidance for assessing blockchain platforms,”
Gartner, Tech. Rep., 2019.

[4] (2019) Blockchain’s big bang: Web 3.0. Gart-
ner. [Online]. Available: https://blogs.gartner.com/avivah-
litan/2019/08 /08 /blockchains-big-bang-web-3-0/

[5] K. Jannes, B. Lagaisse, and W. Joosen, “You don’t need a
ledger: Lightweight decentralized consensus between mobile web
clients,” in Proceedings of the 3rd Workshop on Scalable and Resilient
Infrastructures for Distributed Ledgers, ser. SERIAL '19. NY, USA:
ACM, 2019, p. 3-8.

[6] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,”
2008.

[7] V. Vishnumurthy, S. Chandrakumar, and E. G. Sirer, “Karma: A
secure economic framework for peer-to-peer resource sharing,” in
Workshop on Economics of Peer-to-peer Systems, vol. 35, no. 6, 2003.

(8]

(9]

[10]

(1]

(12]

[13]

[14]

[15]

[16]

[17]

(18]

(19]

[20]

[21]

[22]

(23]

[24]
[25]

[26]

[27]

G. Wood et al., “Ethereum: A secure decentralised generalised
transaction ledger,” Ethereum project yellow paper, vol. 151, no. 2014,
pp. 1-32, 2014.

M. Castro, B. Liskov et al., “Practical byzantine fault tolerance,” in
Proceedings of the Third Symposium on Operating Systems Design and
Implementation, ser. OSDI '99. USA: USENIX Association, 1999,
pp. 173-186.

A. Bessani, J. Sousa, and E. E. P. Alchieri, “State machine repli-
cation for the masses with bft-smart,” in 44th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks, ser.
DSN 2014. USA: IEEE, June 2014, pp. 355-362.

E. Buchman, “Tendermint: Byzantine fault tolerance in the age of
blockchains,” Ph.D. dissertation, University of Guelph, 2016.

Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich,
“Algorand: Scaling byzantine agreements for cryptocurrencies,”
in Proceedings of the 26th Symposium on Operating Systems Principles,
ser. SOSP "17. NY, USA: ACM, 2017, pp. 51-68.

A. Kiayias, A. Russell, B. David, and R. Oliynykov, “Ouroboros: A
provably secure proof-of-stake blockchain protocol,” in Advances
in Cryptology — CRYPTO 2017. Cham: Springer, 2017, pp. 357-388.
M. Yin, D. Malkhi, M. K. Reiter, G. G. Gueta, and 1. Abraham,
“Hotstuff: Bft consensus with linearity and responsiveness,” in
Proceedings of the 2019 ACM Symposium on Principles of Distributed
Computing. NY, USA: ACM, 2019, p. 347-356.

T. Rocket, “Snowflake to avalanche: A novel metastable consensus
protocol family for cryptocurrencies,” AVA Labs, Tech. Rep., 2018.
[Online]. Available: https:/ /avalanchelabs.org/avalanche.pdf

T. Steiner, “What is in a web view: An analysis of progressive web
app features when the means of web access is not a web browser,”
in Companion Proceedings of the The Web Conference 2018, ser. WWW
"18. Republic and Canton of Geneva, CHE: International World
Wide Web Conferences Steering Committee, 2018, p. 789-796.

K. Jannes, B. Lagaisse, and W. Joosen, “The web browser as
distributed application server: Towards decentralized web appli-
cations in the edge,” in Proceedings of the 2Nd International Workshop
on Edge Systems, Analytics and Networking, ser. EdgeSys '19. NY,
USA: ACM, 2019, pp. 7-11.

P. Garcia Lopez, A. Montresor, D. Epema, A. Datta, T. Higashino,
A. Jamnitchi, M. Barcellos, P. Felber, and E. Riviere, “Edge-centric
computing: Vision and challenges,” SIGCOMM Comput. Commun.
Rev., vol. 45, no. 5, p. 3742, Sep. 2015.

A. van der Linde, P. Fouto, J. a. Leitdo, N. Preguica, S. Castifieira,
and A. Bieniusa, “Legion: Enriching internet services with peer-to-
peer interactions,” in Proceedings of the 26th International Conference
on World Wide Web, ser. WWW ’17. Republic and Canton of
Geneva, Switzerland: International World Wide Web Conferences
Steering Committee, 2017, pp. 283-292.

P. Nicolaescu, K. Jahns, M. Derntl, and R. Klamma, “Yjs: A
framework for near real-time p2p shared editing on arbitrary data
types,” in Engineering the Web in the Big Data Era, ser. ICWE 2015.
Cham: Springer, 2015, pp. 675-678.

M. Kleppman and A. R. Beresford, “Automerge: Real-
time data sync between edge devices,” 2018. [Online].
Available: http:/ /martin.kleppmann.com/papers/automerge-
mobiuk18.pdf

K. Jannes, B. Lagaisse, and W. Joosen, “Owebsync: Seamless
synchronization of distributed web clients,” IEEE Transactions on
Parallel and Distributed Systems, vol. 32, no. 9, pp. 2338-2351, 2021.
A. Madhusudan, I. Symeonidis, M. A. Mustafa, R. Zhang, and
B. Preneel, “Sc2share: Smart contract for secure car sharing,” in
Proceedings of the 5th International Conference on Information Systems
Security and Privacy - Volume 1: ICISSP, INSTICC. Portugal:
SciTePress, 2019, pp. 163-171.

PwC, “The sharing economy,” Consumer Intelligence Series, Tech.
Rep., 2015.

S. Fromhart and L. Therattil, “Making blockchain real for customer
loyalty rewards programs,” Deloitte, Tech. Rep., 2016.

M. Sauwens, K. Jannes, B. Lagaisse, and W. Joosen, “Scew: Pro-
grammable bft-consensus with smart contracts for client-centric
p2p web applications,” in Proceedings of the 8th Workshop on Princi-
ples and Practice of Consistency for Distributed Data, ser. PaPoC "21.
NY, USA: ACM, 2021.

E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis,
A. De Caro, D. Enyeart, C. Ferris, G. Laventman, Y. Manevich,
S. Muralidharan, C. Murthy, B. Nguyen, M. Sethi, G. Singh,
K. Smith, A. Sorniotti, C. Stathakopoulou, M. Vukoli¢, S. W. Cocco,
and J. Yellick, “Hyperledger fabric: A distributed operating system

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. X, MONTH YEAR

[28]

[29]

[30]

(31]

[32]

[33]

(34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

(42]

(43]

(44]

[45]

[46]

[47]

[48]

for permissioned blockchains,” in Proceedings of the Thirteenth
EuroSys Conference, ser. EuroSys “18. NY, USA: ACM, 2018.

E. Buchman, J. Kwon, and Z. Milosevic, “The latest gossip on BFT
consensus,” 2018.

V. Shoup, “Practical threshold signatures,” in International Con-
ference on the Theory and Applications of Cryptographic Techniques,
ser. Eurocrypt 2000, Springer. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2000, pp. 207-220.

J. Sousa, A. Bessani, and M. Vukolic, “A byzantine fault-tolerant
ordering service for the hyperledger fabric blockchain platform,”
in 48th annual IEEE/IFIP international conference on dependable sys-
tems and networks (DSN), IEEE. USA: IEEE, 2018, pp. 51-58.

J. Kwon and E. Buchman, “Cosmos whitepaper: A network

of distributed ledgers.” cosmos.network, White paper,
2019. [Online]. Available: https://cosmos.network/cosmos-
whitepaper.pdf

C. Dwork, N. Lynch, and L. Stockmeyer, “Consensus in the pres-
ence of partial synchrony,” J. ACM, vol. 35, no. 2, p. 288-323, Apr.
1988.

L. Lamport, “On interprocess communication,” Distributed Com-
puting, vol. 1, no. 2, pp. 86-101, 1986.

M. Shapiro, N. Perguica, C. Baquero, and M. Zawirski, “Conflict-
free replicated data types,” in SSS 2011 - 13th International Sym-
posium Stabilization, Safety, and Security of Distributed Systems, ser.
Lecture Notes in Computer Science, X. Défago, F. Petit, and
V. Villain, Eds., vol. 6976. Berlin, Heidelberg: Springer Berlin
Heidelberg, Oct. 2011, pp. 386—400.

R. Merkle, “A digital signature based on a conventional encryption
function,” in Advances in Cryptology — CRYPTO ’87. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1988, pp. 369-378.

C. A. Ellis and S.]J. Gibbs, “Concurrency control in groupware
systems,” SIGMOD Rec., vol. 18, no. 2, p. 399407, Jun. 1989.

P. S. Almeida, A. Shoker, and C. Baquero, “Delta state replicated
data types,” Journal of Parallel and Distributed Computing, vol. 111,
pp- 162 — 173, 2018.

C. Jennings, H. Bostréom, J.-I. Bruaroey, A. Bergkvist,
D. Burnett, A. Narayanan, B. Aboba, and T. Brandstetter,
“WebRTC 1.0: Real-time communication between browsers,”
W3C, Candidate Recommendation, 2019. [Online]. Available:
https:/ /www.w3.org/TR /2019 /CR-webrtc-20191213/

J. O’Connor, J.-P. Aumasson, S. Neves, and Z. Wilcox-O’Hearn,
“Blake3: one function, fast everywhere,” 2020. [Online]. Available:
https:/ /blake3.io/

M. Watson, “Web cryptography api,” W3C, Recommendation,
2017. [Online]. Available: https://www.w3.org/TR/2017/REC-
WebCryptoAPI-20170126/

D. Boneh, B. Lynn, and H. Shacham, “Short signatures from
the weil pairing,” in International Conference on the Theory and
Application of Cryptology and Information Security, Springer. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2001, pp. 514-532.

A. Alabbas and J. Bell, “Indexed database api 2.0,”
W3C, Candidate Recommendation, 2018. [Online]. Available:
https:/ /www.w3.org/TR /2018 /REC-Indexed DB-2-20180130/

D. Boneh, C. Gentry, B. Lynn, and H. Shacham, “Aggregate and
verifiably encrypted signatures from bilinear maps,” in Interna-
tional Conference on the Theory and Applications of Cryptographic Tech-
niques, Springer. Berlin, Heidelberg: Springer Berlin Heidelberg,
2003, pp. 416-432.

C.-P. Schnorr, “Efficient signature generation by smart cards,”
Journal of Cryptology, vol. 4, no. 3, pp. 161-174, Jan 1991.

G. G. Gueta, I. Abraham, S. Grossman, D. Malkhi, B. Pinkas,
M. Reiter, D.-A. Seredinschi, O. Tamir, and A. Tomescu, “Sbft:
a scalable and decentralized trust infrastructure,” in 2019 49th
Annual IEEE/IFIP international conference on dependable systems and
networks (DSN). USA: IEEE, 2019, pp. 568-580.

D. Boneh, M. Drijvers, and G. Neven, “Compact multi-signatures
for smaller blockchains,” in International Conference on the Theory
and Application of Cryptology and Information Security, Springer.
Cham: Springer, 2018, pp. 435-464.

A. Rossberg, “Webassembly core specification,”
W3C, Recommendation, 2019. [Online]. Available:
https:/ /www.w3.org/TR /2019 /REC-wasm-core-1-20191205/

A. Haas, A. Rossberg, D. L. Schuff, B. L. Titzer, M. Holman,
D. Gohman, L. Wagner, A. Zakai, and J. Bastien, “Bringing the web
up to speed with webassembly,” SIGPLAN Not., vol. 52, no. 6, p.
185-200, Jun. 2017.

[49]

(50]

[51]
[52]

(53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

14

A. Jangda, B. Powers, E. D. Berger, and A. Guha, “Not so fast:
Analyzing the performance of webassembly vs. native code,” in
Proceedings of the 2019 USENIX Conference on Usenix Annual Techni-
cal Conference, ser. USENIX ATC '19. USA: USENIX Association,
2019, p. 107-120.

N. D. Matsakis and F. S. Klock, “The rust language,” in Proceedings
of the 2014 ACM SIGAda Annual Conference on High Integrity Lan-
guage Technology, ser. HILT '14. NY, USA: ACM, 2014, p. 103-104.
“Blake3,” 2021. [Online]. Available: https:/ /github.com/BLAKE3-
team/BLAKE3/

“blst,” 2021. [Online]. Available:
https://github.com/supranational /blst/
I. Hickson, “Web workers,” W3C, Working Draft, 2015.

[Online]. Available: http://www.w3.org/TR/2015/WD-workers-
20150924/

W. Almesberger, “Linux network traffic control — implementation
overview,” 1999.

OpenSignal, “Mobile network experience report,”
https:/ /www.opensignal.com/reports/2019/01/usa/mobile-
network-experience, 2019.

G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Laksh-
man, A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels,
“Dynamo: amazon’s highly available key-value store,” in Proceed-
ings of Twenty-first ACM SIGOPS Symposium on Operating Systems
Principles, ser. SOSP '07, vol. 41(6). NY, USA: ACM, 2007, pp.
205-220.

L. Bonniot, C. Neumann, and F. Taiani, “Pnyxdb: a lightweight
leaderless democratic byzantine fault tolerant replicated datas-
tore,” in The 39th IEEE International Symposium on Reliable Dis-
tributed Systems (SRDS '20), ser. The 39th IEEE International Sym-
posium on Reliable Distributed Systems. Shanghai, China: IEEE,
2020.

P-L. Aublin, S. B. Mokhtar, and V. Quéma, “Rbft: Redundant
byzantine fault tolerance,” in IEEE 33rd International Conference on
Distributed Computing Systems. USA: IEEE, 2013, pp. 297-306.

P. Nicolaescu, K. Jahns, M. Derntl, and R. Klamma, “Near real-
time peer-to-peer shared editing on extensible data types,” in
Proceedings of the 19th International Conference on Supporting Group
Work, ser. GROUP "16. NY, USA: ACM, 2016, pp. 39-49.

A. van der Linde, J. a. Leitdo, and N. Preguica, “Practical client-
side replication: Weak consistency semantics for insecure set-
tings,” Proc. VLDB Endow., vol. 13, no. 12, p. 2590-2605, Jul. 2020.
M. Barbosa, B. Ferreira,]. a. Marques, B. Portela, and N. Preguica,
“Secure conflict-free replicated data types,” in International Confer-
ence on Distributed Computing and Networking 2021, ser. ICDCN "21.
NY, USA: ACM, 2021, p. 6-15.

V. Buterin et al., “A next-generation smart contract and decentral-
ized application platform,” ethereum.org, White paper, 2014.

S. Gupta and M. Sadoghi, Blockchain Transaction Processing. Cham:
Springer, 2018, pp. 1-11.

C. Berger and H. P. Reiser, “Scaling byzantine consensus: A broad
analysis,” in Proceedings of the 2Nd Workshop on Scalable and Resilient
Infrastructures for Distributed Ledgers, ser. SERIAL'18. NY, USA:
ACM, 2018, pp. 13-18.

K. J. O'Dwyer and D. Malone, “Bitcoin mining and its energy
footprint,” in Proceedings of the 2014 IET Irish Signals and Systems
Conference, ser. ISSC 2014/CIICT 2014. USA: IEEE, 2014, pp. 280-
285.

G. Ateniese, I. Bonacina, A. Faonio, and N. Galesi, “Proofs of
space: When space is of the essence,” in Security and Cryptography
for Networks. Cham: Springer, 2014, pp. 538-557.

G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z. Peter-
son, and D. Song, “Provable data possession at untrusted stores,”
in Proceedings of the 14th ACM Conference on Computer and Commu-
nications Security, ser. CCS '07. NY, USA: ACM, 2007, p. 598-609.
E. Kokoris-Kogias, P. Jovanovic, N. Gailly, I. Khoffi, L. Gasser,
and B. Ford, “Enhancing bitcoin security and performance with
strong consistency via collective signing,” in Proceedings of the 25th
USENIX Conference on Security Symposium, ser. SEC'16. USA:
USENIX Association, 2016, p. 279-296.

E. Syta, I. Tamas, D. Visher, D. I. Wolinsky, P. Jovanovic, L. Gasser,
N. Gailly, I. Khoffi, and B. Ford, “Keeping authorities "honest
or bust” with decentralized witness cosigning,” in 2016 IEEE
Symposium on Security and Privacy (SP), ser. SP “16. USA: IEEE,
May 2016, pp. 526-545.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. X, MONTH YEAR 15

[70]

[71]

[72]

[73]

(74]

[75]

[76]

[77]

[78]

[79]

(80]

[81]

(82]

(83]

[84]

(85]

(86]

(871

(88]

[89]

D. Mazieres, “The stellar consensus protocol: A federated model
for internet-level consensus,” Stellar Development Foundation,
Tech. Rep., 2015.

M. Lokhava, G. Losa, D. Mazieres, G. Hoare, N. Barry, E. Gafni,
J. Jove, R. Malinowsky, and J. McCaleb, “Fast and secure global
payments with stellar,” in Proceedings of the 27th ACM Symposium
on Operating Systems Principles, ser. SOSP '19. NY, USA: ACM,
2019, p. 80-96.

K. Minjeong, K. Yujin, and K. Yongdae, “Is stellar as secure as you
think?” in 2019 IEEE European Symposium on Security and Privacy
Workshops (EuroS PW). USA: IEEE, 2019, pp. 377-385.

A. Miller, Y. Xia, K. Croman, E. Shi, and D. Song, “The honey
badger of bft protocols,” in Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, ser. CCS "16.
NY, USA: ACM, 2016, pp. 31-42.

S. Duan, M. K. Reiter, and H. Zhang, “Beat: Asynchronous bft
made practical,” in Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security, ser. CCS '18. NY, USA:
ACM, 2018, p. 2028-2041.

S. Micali, M. Rabin, and S. Vadhan, “Verifiable random functions,”
in 40th Annual Symposium on Foundations of Computer Science, ser.
FOCS 99, IEEE. USA: IEEE, 1999, pp. 120-130.

T. Rocket, M. Yin, K. Sekniqi, R. van Renesse, and E. G. Sirer, “Scal-
able and probabilistic leaderless bft consensus through metastabil-
ity,” 2019.

R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong, “Zyzzyva:
Speculative byzantine fault tolerance,” in Proceedings of Twenty-
First ACM SIGOPS Symposium on Operating Systems Principles, ser.
SOSP '07. NY, USA: ACM, 2007, p. 45-58.

P-L. Aublin, R. Guerraoui, N. KneZevi¢, V. Quéma, and
M. Vukoli¢, “The next 700 bft protocols,” ACM Trans. Comput. Syst.,
vol. 32, no. 4, Jan. 2015.

S. Gupta, S. Rahnama, J. Hellings, and M. Sadoghi, “Resilientdb:
Global scale resilient blockchain fabric,” Proc. VLDB Endow.,
vol. 13, no. 6, p. 868-883, Feb. 2020.

G. S. Veronese, M. Correia, A. N. Bessani, L. C. Lung, and P. Veris-
simo, “Efficient byzantine fault-tolerance,” IEEE Transactions on
Computers, vol. 62, no. 1, pp. 16-30, 2013.

R. Kapitza, J. Behl, C. Cachin, T. Distler, S. Kuhnle, S. V. Mo-
hammadi, W. Schroder-Preikschat, and K. Stengel, “Cheapbft:
Resource-efficient byzantine fault tolerance,” in Proceedings of the
7th ACM European Conference on Computer Systems, ser. EuroSys
"12. NY, USA: ACM, 2012, p. 295-308.

J. Behl, T. Distler, and R. Kapitza, “Hybrids on steroids: Sgx-
based high performance bft,” in Proceedings of the Twelfth European
Conference on Computer Systems, ser. EuroSys ‘17. NY, USA: ACM,
2017, p. 222-237.

F. Zhang, L. Eyal, R. Escriva, A. Juels, and R. Van Renesse, “Rem:
Resource-efficient mining for blockchains,” in Proceedings of the
26th USENIX Conference on Security Symposium, ser. SEC'17. USA:
USENIX Association, 2017, p. 1427-1444.

J. Liu, W. Li, G. O. Karame, and N. Asokan, “Scalable byzantine
consensus via hardware-assisted secret sharing,” IEEE Transactions
on Computers, vol. 68, no. 1, pp. 139-151, 2018.

M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh,
J. Horn, S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and M. Ham-
burg, “Meltdown: Reading kernel memory from user space,” in
27th USENIX Security Symposium (USENIX Security 18). Balti-
more, MD: USENIX Association, 2018, pp. 973-990.

P. Kocher, J. Horn, A. Fogh, , D. Genkin, D. Gruss, W. Haas,
M. Hamburg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and
Y. Yarom, “Spectre attacks: Exploiting speculative execution,” in
40th IEEE Symposium on Security and Privacy (S&P’19). USA: IEEE,
2019, pp. 1-19.

J. Van Bulck, D. Moghimi, M. Schwarz, M. Lipp, M. Minkin,
D. Genkin, Y. Yuval, B. Sunar, D. Gruss, and F. Piessens, “Lvi:
Hijacking transient execution through microarchitectural load
value injection,” in 41th IEEE Symposium on Security and Privacy
(S&P20). USA: IEEE, 2020.

Z. Istvan, A. Sorniotti, and M. Vukoli¢, “Streamchain: Do
blockchains need blocks?” in Proceedings of the 2nd Workshop on
Scalable and Resilient Infrastructures for Distributed Ledgers, ser.
SERIAL’18. NY, USA: ACM, 2018, p. 1-6.

P. Nasirifard, R. Mayer, and H.-A. Jacobsen, “Fabriccrdt: A conflict-
free replicated datatypes approach to permissioned blockchains,”
in Proceedings of the 20th International Middleware Conference, ser.
Middleware '19. NY, USA: ACM, 2019, p. 110-122.

[90]

[91]

[92]

[93]

[94]

[95]

[96]

N. Berendea, H. Mercier, E. Onica, and E. Riviere, “Fair and
efficient gossip in hyperledger fabric,” in IEEE 40th International
Conference on Distributed Computing Systems (ICDCS). USA: IEEE,
2020.
J. Poon and T. Dryja, “The bitcoin lightning network:
Scalable off-chain instant payments,” 2016. [Online]. Available:
https:/ /lightning network/lightning-network-paper.pdf
J. Lind, O. Naor, I. Eyal, F. Kelbert, E. G. Sirer, and P. Piet-
zuch, “Teechain: A secure payment network with asynchronous
blockchain access,” in Proceedings of the 27th ACM Symposium on
Operating Systems Principles, ser. SOSP '19. NY, USA: ACM, 2019,
. 63-79.
}). Poon and V. Buterin, “Plasma: Scalable autonomous smart
contracts,” 2017. [Online]. Available: https://plasma.io/plasma-
deprecated.pdf
A. Miller, 1. Bentov, S. Bakshi, R. Kumaresan, and P. McCorry,
“Sprites and state channels: Payment networks that go faster than
lightning,” in Financial Cryptography and Data Security. ~Cham:
Springer, 2019, pp. 508-526.
P. McCorry, C. Buckland, S. Bakshi, K. Wiist, and A. Miller, “You
sank my battleship! a case study to evaluate state channels as a
scaling solution for cryptocurrencies,” in Financial Cryptography
and Data Security. Cham: Springer, 2020, pp. 35-49.
P. McCorry, S. Bakshi, I. Bentov, S. Meiklejohn, and A. Miller, “Pisa:
Arbitration outsourcing for state channels,” in Proceedings of the 1st
ACM Conference on Advances in Financial Technologies, ser. AFT "19.
NY, USA: ACM, 2019, p. 16-30.

Kristof Jannes is a Ph.D. candidate in the De-
partment of Computer Science at KU Leuven in
Belgium, and a member of the research group
imec-DistriNet. His research activities are under
the supervision of Prof. Dr. Wouter Joosen and
Dr. Bert Lagaisse. He received his Master’s de-
gree in computer science from the KU Leuven
in 2018. His main research interests are in the
area of data synchronization, consensus, and
decentralization.

Emad Heydari Beni is a Ph.D. candidate in the
Department of Computer Science at KU Leuven
in Belgium, and a member of the research group
imec-DistriNet. His research activities are under
the supervision of Prof. Dr. Wouter Joosen and
Dr. Bert Lagaisse. He received his Master’s de-
gree in computer science from the University of
Antwerp in 2014. His main research interests are
in the area of adaptive and reflective middleware,
cloud platforms, and applied cryptography.

Wouter Joosen is a full professor at the Depart-
ment of Computer Science of the KU Leuven
in Belgium, where he teaches courses on soft-
ware architecture and component-based soft-
ware engineering, distributed systems, and the
engineering of secure service platforms. His re-
search interests are in aspect-oriented software
development, focusing on software architecture
and middleware, and in security aspects of soft-
ware, including security in component frame-
works and security architectures.

Bert Lagaisse is a senior industrial research
manager at the imec-DistriNet research group
in which he manages a portfolio of applied
research projects on cloud technologies, dis-
tributed data management and security middle-
ware in close collaboration with industrial part-
ners. He has a strong interest in distributed sys-
tems, in enterprise middleware, cloud platforms,
and security services. He obtained his MSc in
computer science at KU Leuven in 2003 and
finished his Ph.D. in the same domain in 2009.

