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ABSTRACT
The web is shifting to a client-centric, decentralized model where

web clients become the leading execution environment for appli-

cation logic and data storage. However, current solutions to build

decentralized web applications with multiple distrusting parties

often involve a separate backend blockchain network. In this paper,

we present MobBFT, a browser-based platform for decentralized

BFT consensus in client-centric, community driven applications.

MobBFT runs entirely in the browser, alleviating the need to use an

expensive public blockchain or set up a complex private blockchain.

We propose a novel, optimistic, leaderless consensus protocol, tol-

erating Byzantine replicas, combined with a robust and efficient

state-based synchronization protocol. This protocol makes Mob-

BFT well suited for the decentralized client-centric web and its

dynamic nature with many network disruptions or node failures.

Using a state-based protocol, no transaction log is stored, keep-

ing the overall storage footprint small for client-centric devices.

MobBFT uses an optimized implementation of the standard BLS

scheme for efficient aggregation and storage of signatures. Our per-

formance evaluation shows that MobBFT can achieve transaction

finality within seconds in community-driven networks of mobile

web clients, even in the context of network problems, node failures,

and Byzantine behavior.
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1 INTRODUCTION
Browsers and client-side web technologies offer increasing capabil-

ities to enable fully client-side web applications that can operate

independently and in a stand-alone fashion, in contrast to the server-

centric model [8, 33]. Web 3.0 can be defined as the decentralized

web where users are in control of their data [17], and that replaces

centralized intermediaries with decentralized networks and plat-

forms [31, 89]. Community-driven, decentralized networks can

open the road to many use cases for the sharing economy [9, 54, 73]

or shared loyalty programs for local communities [10, 32]. Such

client-centric collaborations can, for example, enable a small net-

work of merchants in a local shopping street, or at a farmer’s market

to set up a shared loyalty program between the merchants in an

ad-hoc fashion. These small-scale, specialized collaborative net-

works can empower motivated citizens to bring value to their local

community, without involving an incumbent big-tech company

that can change the rules unilateral at any moment.

However, current state-of-the-art peer-to-peer data synchroniza-

tion frameworks for the browser such as Legion [82], Yjs [66],

Automerge [44], and Anonymized [11] focus on full replication and

eventual consistency between trusted clients. Each replica can mod-

ify all data, and all modifications are automatically replicated to all

replicas. These protocols lack Byzantine Fault Tolerance (BFT). Yet,

they are easy to set up and trusted parties can quickly use these to

synchronize and modify a shared data set between them.

Decentralized interactions between distrusting parties can be en-

abled by using a classical BFT consensus protocol such as PBFT [26],

BFT-SMaRt [18], Tendermint [23], Algorand [34], Ouroboros [43],

or HotStuff [87]. These classical BFT protocols are very fast and

have a high throughput, but typically assume server-to-server com-

munication with low-latency network connections, and assume ev-

ery node is connected to all other nodes. Nakamoto consensus [64],

used in several blockchains such as Bitcoin and Ethereum [25], re-

laxes this requirement and only requires a loosely coupled network.

However, blockchains based on Nakamoto consensus are too slow

for many use cases. They need minutes, or even an hour, to con-

firm a transaction with high probability. Moreover, they consume a

large amount of energy and need a lot of processing power. At last,

Avalanche consensus [74] tries to solve the scalability problem by

using the concept of meta-stability. Only a small subset of replicas

need to be sampled to reach consensus, however, you still need a

connection to every other replica, as the replicas that you need to

sample change continuously.

Ultimately, a decentralized web application should be able to run

in a robust and resilient way over a network of online client devices

such as smartphones. Such devices have a permanent yet unstable

internet connection over a data subscription, and are operational

and reactive most of the time. However, the existing BFT consensus

protocols are designed for more server-like infrastructure that has

lots of processing power, storage space, and a stable, low-latency

network connection. The motivated citizens in our envisioned use

cases do not have this kind of knowledge, budget, and infrastructure

available to set up a private network of servers running a BFT

protocol between them. They rather want to use their existing

hardware such as a low-end computer, or even a mobile device.

They could use a public blockchain network, at the cost of paying

a fee for every transaction, which lowers the economic viability

of this approach. A private network between the citizens without

fees is more suitable. This also has the advantage that not all data

is publicly readable by the whole world. Even if you conclude you

need a blockchain [86], a more lightweight approach to consensus

can be more appropriate [10].

In this paper, we present MobBFT, a novel peer-to-peer data

synchronization framework for decentralized web applications be-

tweenmistrusting parties. MobBFT combines the efficient operation

and lightweight setup of a peer-to-peer data synchronization frame-

work with the resilience and fault tolerance of a BFT consensus

protocol. The novel BFT protocol, optimized for unstable network

conditions, does not require that all replicas are connected to each

other. It also does not rely on a leader, removing the need for a costly

leader-election procedure when this leader is malicious or loses its

network connection temporary. The latter scenario is common in

our target environment. Each browser replica only maintains the
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current authenticated state, and does not need to keep track of an

operation log or transaction history, keeping the storage footprint

small. To further reduce the storage and bandwidth requirements,

we use an aggregate signature scheme called BLS [21]. This also re-

duces the computational requirements when all replicas are honest,

as only a single aggregate signature has to be verified. The authen-

ticated state and consensus votes are replicated over multiple hops

using a gossip protocol.

To summarize, MobBFT has the following contributions
1
:

(1) Lightweight, leaderless, client-centric Byzantine fault toler-

ant synchronization and consensus.

(2) Robust, state-based synchronization of both the data and

the votes for the consensus protocol using state-based CRDTs

and Merkle-trees.

(3) Optimistic fast pathwhen nobody is acting Byzantine, grace-

fully degrading to the slow path when under attack.

(4) Efficient computation and compact storage of signatures

using the BLS signature scheme.

Our evaluation, using our application use case of a shared loyalty

program between small-scale merchants, shows that MobBFT is a

practical solution for these kinds of community-driven use cases.

MobBFT achieves transaction finality in the order of seconds, even

in networks with 100 browser clients, or in unstable network con-

ditions. No complex infrastructure is required, the participating

merchants only need a browser and an internet connection.

Section 2 further discusses some motivating use cases and back-

ground in more depth. Section 3 presents MobBFT’s lightweight

BFT consensus protocol and the state-based replication strategy.

The detailed web-based middleware architecture of MobBFT is elab-

orated in Section 4. Our evaluation in Section 5 focuses on many

aspects of performance in both the optimistic scenario as well as

more realistic and even Byzantine scenarios. Section 6 elaborates

on important related work. We conclude in Section 7.

2 MOTIVATION AND BACKGROUND
This section further motivates the need for a lightweight, robust

consensus middleware by describing several community-driven

use cases. Then we give some background on state-of-the-art ap-

proaches using a blockchain and BFT consensus.

2.1 Motivational use cases
We describe two initial use cases that would benefit from the light-

weight consensus offered by MobBFT. They both involve business

transactions happening in real life and need interactive perfor-

mance and robustness, rather than high throughput or scalability.

We then formulate our vision on decentralized web applications.

Sharing economy. Small communities, such as an apartment build-

ing or local neighborhood, can share tools or cars [54] with each

other using a peer-to-peer platform to keep track of the current

possession and reservation of tools and cars [73]. When a tool is

being exchanged, it is checked for potential damage which can be

registered in the network.

Loyalty programs. Integrated loyalty programs can be more ef-

fective than traditional loyalty programs that are limited to a single

1
A preliminary workshop paper [10] already described our initial goal, the use case of

loyalty points and an initial idea for a solution.

company [32]. Think about airlines that award miles which can be

redeemed with several partners. Such collaborations usually intro-

duce an extra trusted intermediary and add more layers of manage-

ment and operational logistics. This trusted party can charge high

transaction costs to be part of the integrated network. For small

merchants on a farmer’s market or in a local shopping street, this

operational overhead is too much of a burden. A decentralized peer-

to-peer network can enable fast and secure creation, redemption,

and exchange of loyalty points across different merchants.

Vision. We envision that communities will be able to use Mob-

BFT as a platform to explore new applications and use cases that

were previously not feasible. While our initial proof-of-concept

implementation is targeting the browser, the techniques explained

in this paper can be easily ported towards native mobile and light-

weight desktop applications. MobBFT does not need any complex

infrastructure, and it currently provides a simple JavaScript-based

API, which allows many developers to start developing decentral-

ized applications. Those decentralized applications can be made

open source, which allows many people to verify and vouch for

them. Local communities who want to set up a decentralized appli-

cation between the local participants, can use such an open-source

application and do not need to concern themselves with a complex

infrastructure setup to run the application. Nor do they need to

rely on a third party general purpose public blockchain network.

2.2 Background on BFT consensus
Existing blockchains can be roughly split into two categories: pub-

lic and permissioned blockchains. Public blockchains are open for

everyone to participate in. Two examples are Bitcoin [64] and

Ethereum [25]. Bitcoin allows everyone to host a replica node and

submit transactions. However, Bitcoin is quite slow, as a new block

is only created every 10 minutes on average. This means that trans-

actions take on average 10 minutes to be confirmed by the network.

But as multiple conflicting chains can occur, one must wait for at

least 6 blocks to be sure that a transaction will not be reverted. This

increases the total latency to one hour, which is too slow formany of

the motivational use cases. Ethereum is another public blockchain

with a much faster average block time, and consequently a lower

latency. Ethereum allows everyone to write smart-contracts to be
executed by the Ethereum network. Each invocation of a contract

costs a small amount of Ether (called gas). This makes Ethereum

infeasible for small business transactions such as loyalty points, as

the total cost will become too high.

Permissioned or private blockchains use access control to limit

who can see and create transactions on the blockchain. Because

they can only be accessed by a limited number of known parties,

transaction fees are not required to rewardminers and combat spam.

An example is Hyperledger Fabric [3]. These private blockchains

can use a Byzantine fault tolerant consensus protocol to reach

consensus over which transactions to execute and in which order.

They have much smaller latency and can process more transactions

per second compared to the public blockchains. However, to set

up Hyperledger Fabric in a decentralized fashion, there is a large

back-end infrastructure required. The actual blockchain network

consists of many nodes: peers, orderers, REST-API servers, database

servers, and a certificate authority. Setting up and managing these
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services requires a lot of infrastructural management for small

merchants. They do not have the knowledge nor budget for such a

deployment, especially considering the maintenance overhead and

resource costs. These small merchants want to quickly set up an

integrated loyalty network with minimal back-end setup. However,

most of them already own a desktop or a mobile computer such as

a laptop or tablet.

Two existing state-of-the-art protocols for BFT consensus, which

we will use in our comparative evaluation, are BFT-SMaRt [18] and

Tendermint [23, 24]. BFT-SMaRt is a more traditional BFT protocol,

similar to PBFT [78], where all replicas are connected to each other,

and one leader drives the protocol. If that leader fails, a new one will

have to be elected before any progress can be made. BFT-SMaRt can

be used in Hyperledger Fabric [79]. Tendermint [24] uses Gossip

for communication between the replicas. There is still a leader,

however, that leader changes frequently. Tendermint is used in the

Cosmos blockchain [48].

3 OPTIMISTIC STATE-BASED BFT
This section explains the state-based consensus protocol used in

MobBFT. First, it describes the adversary model and its properties.

Then it explains the protocol specification. At last, this section

provides safety and liveness proofs.

3.1 Overview and adversary model
The core protocol is an asynchronous, leaderless, Byzantine fault

tolerant consensus protocol. In an asynchronous network, messages

are eventually delivered, but no timing assumption is made [29].

An adversary might also corrupt up to 𝑓 replicas of the 𝑛 ≥ 3𝑓 + 1
total replicas. They can deviate from the protocol in any arbitrary

way. Such replicas are called Byzantine, while the replicas that

are strictly following the protocol are called honest. We assume

attackers are computationally bounded and cannot forge the used

asymmetric signatures or find collisions for the used cryptographic

hash functions.

The protocol is used to implement an Atomic Register [49] that

can hold a single value that can be read and written by multiple

replicas. All writes are atomic, meaning that only a single state

transition can happen at any time. Extra conditions can be applied

to limit who can write to it, and which values are acceptable. Mob-

BFT does not use a leader to coordinate the protocol, removing a

common single-point-of-failure compared to many existing BFT

protocols. In such leader-based protocols, the failure of a leader

leads to a long delay before consensus can be reached. The con-

sensus protocol presented here uses voting, where every replica

has exactly one vote. The set of replicas is fixed, and changes to

the replica set have to be made outside the protocol. Consensus is

reached for each register separately, which means that each register

has its own instance of the MobBFT protocol.

Formal properties. Let ℜ be a cluster of 𝑛 replicas with 𝑓 Byzan-

tine replicas and 𝑛 ≥ 3𝑓 + 1. MobBFT guarantees the following

properties:

• Non-divergence: If replicas 𝑅1, 𝑅2 ∈ ℜ are able to con-

struct quorum certificates 𝑞𝑐1 for value 𝑣𝑎𝑙1 and 𝑞𝑐2 for

value 𝑣𝑎𝑙2 at version 𝑣 , then 𝑣𝑎𝑙1 = 𝑣𝑎𝑙2.

• Termination: If an honest replica 𝑅 ∈ ℜ proposes a new

value at version 𝑣 , eventually a replica will be able to con-

struct a quorum certificate 𝑞𝑐 for some value at version

𝑣 .

The first property is a safety property and guarantees that all

state changes are atomic for the whole network. The second prop-

erty is a liveness property and guarantees that non-conflicting

transactions will be eventually executed by all replicas. Notice that

the value that is committed in this property is not necessarily the

originally proposed value. It is not guaranteed that a value will be

committed, as long as other concurrent values are proposed as well.

3.2 Protocol specification
The specification of the protocol is shown in Algorithm 1 and 2.

Each atomic register has its own state which consists of three parts.

The first part is the current value and a quorum certificate. The

quorum certificate contains signatures of a supermajority of 𝑛 − 𝑓

replicas, and proves the validity of the value. The second part is a

map, which maps rounds to a collection of votes for the next value.

In each round, there can be multiple proposed values. The third part

consists of a new proposed value and a partial quorum certificate

for that value. This state is shown at the first 5 lines of Algorithm 2.

Consensus is reached in two steps, first a supermajority needs

to be reached in the last round of the 𝑣𝑜𝑡𝑒𝑠 , then a supermajority

needs to be reached for the proposed quorum certificate. The first

step will establish a resilient quorum, while the second step will

guarantee that sufficiently many replicas know that such a quorum

has been achieved.

State-based replication protocol. The current value and its quo-

rum certificate, and the votes and proposal when present, are repli-

cated by using a state-based Gossip protocol. This protocol is a

peer-to-peer version of Anonymized [11], which uses state-based

Conflict-free Replicated Data Types (CRDTs) [77] combined with

a Merkle-tree [59] to efficiently replicate the updated state. The

CRDTs being used are Observed-Removed Maps [11] and Grow-

only Sets [77]. There are extra constraints imposed on the CRDTs

due to the Byzantine nature. The Merkle tree is used to efficiently

replicate the state between any two replicas. If the state of two

replicas is the same, only the root hash is sent and compared, which

limits the network usage. If the states differ, the protocol descends in

the tree looking for mismatching hashes to find out which registers

must be synchronized. By using a state-based approach, rather than

the operation-based approach of Operational Transformation [30],

operation-based CRDTs [77], or blockchains [64], we only need to

store the current state together with some metadata. There is no

need to store the full log of all operations to later convince repli-

cas that were temporarily offline of the new state. Replicas also

do not need to keep track of the state of other replicas, or which

messages are already received by which replica [2]. If a new value

and quorum certificate with a higher version are received, then the

protocol will accept the new state, and the protocol will reset back

to line 3 of Algorithm 2 with that newer version.

The replicas execute a gossip protocol to exchange their current

state with each other. Each time a new state is received, the local

state is merged with the remote state. An example of this replication

process is shown in Figure 1. There are four non-Byzantine replicas
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𝐴 {};⊥ {(5, {𝐴}) };⊥
SET(5)

{(5, {𝐴, 𝐵,𝐶 }) }; (5, {𝐴, 𝐵 })

𝐵 {};⊥ {(5, {𝐴, 𝐵 }) };⊥ {(5, {𝐴, 𝐵,𝐶 }) }; (5, {𝐵 })

𝐶 {};⊥ {(5, {𝐴,𝐶 }) };⊥ {(5, {𝐴, 𝐵,𝐶 }) }; (5, {𝐵,𝐶 })

𝐷 {};⊥ {(5, {𝐴,𝐶,𝐷 }) }; (5, {𝐷 }) {(5, {𝐴, 𝐵,𝐶, 𝐷 }) }; (5, {𝐵,𝐶, 𝐷 })
𝑡0 𝑡1 𝑡2 𝑡3 𝑡4 𝑡5

Figure 1: State-based synchronization of an Atomic Register with 4 replicas 𝐴, 𝐵,𝐶, 𝐷 . Only the current 𝑣𝑜𝑡𝑒𝑠 [0] and 𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙 are
shown for brevity. 𝑉𝑒𝑟𝑠𝑖𝑜𝑛 and 𝑟𝑜𝑢𝑛𝑑 are not shown as they stay always the same in this example.

with an empty set of votes. Each item lists the value and the set of

signatures of the replicas that voted for it. The scenario starts at 𝑡1
with replica A proposing a new value (line 7-8 of Algorithm 2). The

state is replicated to the other replicas randomly, and all replicas

collect the votes in the set of signatures. For example, at 𝑡2, replica

B and C will vote for the current winning value as they did not yet

vote (line 10-15 of Algorithm 2).

Note that we do not explicitly show the gossiping in Algorithm 2

to keep the algorithm compact. During all phases in the algorithm,

the state is continuously replicated to the other replicas.

Algorithm 1 Utilities (for replica 𝑟 ).

1: function winningValue(𝑣𝑜𝑡𝑒𝑠𝐼𝑛𝑅𝑜𝑢𝑛𝑑)

2: return 𝑎𝑟𝑔𝑚𝑎𝑥𝑣𝑎𝑙 len({𝑣 ∈ 𝑣𝑜𝑡𝑒𝑠𝐼𝑛𝑅𝑜𝑢𝑛𝑑 : 𝑣 .𝑣𝑎𝑙 = 𝑣𝑎𝑙})
3: function votesForValue(𝑣𝑜𝑡𝑒𝑠𝐼𝑛𝑅𝑜𝑢𝑛𝑑 , 𝑣𝑎𝑙)

4: return {𝑣 ∈ 𝑣𝑜𝑡𝑒𝑠𝐼𝑛𝑅𝑜𝑢𝑛𝑑 : 𝑣 .𝑣𝑎𝑙 = 𝑣𝑎𝑙}
5: function hasVoted(𝑣𝑜𝑡𝑒𝑠𝐼𝑛𝑅𝑜𝑢𝑛𝑑)

6: return ∃ 𝑣 ∈ 𝑣𝑜𝑡𝑒𝑠𝐼𝑛𝑅𝑜𝑢𝑛𝑑 : 𝑣 .𝑟 = 𝑟

7: function vote(𝑣𝑒𝑟𝑠𝑖𝑜𝑛, 𝑟𝑜𝑢𝑛𝑑 , 𝑣𝑎𝑙 , 𝑡𝑦𝑝𝑒)

8: 𝑣𝑜𝑡𝑒 ← Vote(𝑣𝑎𝑙, 𝑟 )
9: 𝑣𝑜𝑡𝑒.𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 ← sign(𝑣𝑒𝑟𝑠𝑖𝑜𝑛, 𝑟𝑜𝑢𝑛𝑑, 𝑣𝑎𝑙, 𝑡𝑦𝑝𝑒, 𝑟 )
10: return 𝑣𝑜𝑡𝑒

Reading and writing. When reading the value of a register, it

will return the currently accepted value. This request is always

executed on the local replica and does not involve any network

requests. To write a new value, a replica has to propose a new

value to the other replicas. This process is the PREPARE phase in

Algorithm 2. The proposing replica adds the new value and its vote

to round 0 of 𝑣𝑜𝑡𝑒𝑠 . As the protocol is leaderless, any replica can

be a proposing replica and multiple replicas can propose a new

value simultaneously. Replicas are only allowed to vote once in

each round for each version, so if the replica already voted for

another value in that round, it will have to wait until consensus is

reached for the current set of 𝑣𝑜𝑡𝑒𝑠 , and propose the new value for

the version after it.

Consensus. Consensus about which value will be accepted for a

version is reached in two phases, called PRE-COMMIT and COMMIT in

Algorithm 2. Honest replicas will always vote for the value with the

most votes in round 0. If a round has reached a supermajority of

votes for a single value, then no new round can be started anymore,

and the replicas will start creating a new proposed quorum certifi-

cate. If a supermajority of the replicas have voted, but not a single

Algorithm 2 Basic protocol (for replica 𝑟 ).

1: 𝑣𝑎𝑙𝑢𝑒 ← ⊥
2: 𝑐𝑜𝑚𝑚𝑖𝑡𝑄𝐶 ← ⊥
3: for 𝑣𝑒𝑟𝑠𝑖𝑜𝑛 ← 1, 2, 3, ... do
4: 𝑣𝑜𝑡𝑒𝑠 ← ∅ ⊲ 𝑟𝑜𝑢𝑛𝑑 ↦→ 𝑣𝑜𝑡𝑒𝑠𝐼𝑛𝑅𝑜𝑢𝑛𝑑

5: 𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙 ← ⊥
⊲ PREPARE phase

6: as a proposing replica:

7: wait for value 𝑣𝑎𝑙 from client

8: 𝑣𝑜𝑡𝑒𝑠 [0] ← {vote(𝑣𝑒𝑟𝑠𝑖𝑜𝑛, 0, 𝑣𝑎𝑙, PRE-COMMIT)}
9: as a non-proposing replica:
10: wait for any value in 𝑣𝑜𝑡𝑒𝑠

11: for 𝑟𝑜𝑢𝑛𝑑 ← 0, 1, 2, 3, ... do
⊲ PRE-COMMIT phase

12: if ¬hasVoted(𝑣𝑜𝑡𝑒𝑠 [𝑟𝑜𝑢𝑛𝑑]) then
13: 𝑣𝑎𝑙 ← winningValue(𝑣𝑜𝑡𝑒𝑠 [0])
14: 𝑣𝑜𝑡𝑒 ← vote(𝑣𝑒𝑟𝑠𝑖𝑜𝑛, 𝑟𝑜𝑢𝑛𝑑, 𝑣𝑎𝑙, PRE-COMMIT)
15: 𝑣𝑜𝑡𝑒𝑠 [𝑟𝑜𝑢𝑛𝑑] ← 𝑣𝑜𝑡𝑒𝑠 [𝑟𝑜𝑢𝑛𝑑] ∪ {𝑣𝑜𝑡𝑒}
16: wait for (𝑛 − 𝑓 ) votes in 𝑣𝑜𝑡𝑒𝑠 [𝑟𝑜𝑢𝑛𝑑]
17: 𝑣𝑎𝑙 ← winningValue(𝑣𝑜𝑡𝑒𝑠 [𝑟𝑜𝑢𝑛𝑑])
18: 𝑣𝑎𝑙𝑉𝑜𝑡𝑒𝑠 ← votesForValue(𝑣𝑜𝑡𝑒𝑠 [𝑟𝑜𝑢𝑛𝑑], 𝑣𝑎𝑙)
19: if len(𝑣𝑎𝑙𝑉𝑜𝑡𝑒𝑠) ≥ (𝑛 − 𝑓 ) then
20: 𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙 ← Proposal(𝑣𝑎𝑙)
21: 𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙 .𝑞𝑐 ← {vote(𝑣𝑒𝑟𝑠𝑖𝑜𝑛, 𝑟𝑜𝑢𝑛𝑑, 𝑣𝑎𝑙, COMMIT)}
22: else
23: 𝑣𝑎𝑙 ← winningValue(𝑣𝑜𝑡𝑒𝑠 [0])
24: 𝑣𝑜𝑡𝑒 ← vote(𝑣𝑒𝑟𝑠𝑖𝑜𝑛, 𝑟𝑜𝑢𝑛𝑑 + 1, 𝑣𝑎𝑙, PRE-COMMIT)
25: 𝑣𝑜𝑡𝑒𝑠 [𝑟𝑜𝑢𝑛𝑑 + 1] ← {𝑣𝑜𝑡𝑒}
26: continue

⊲ COMMIT phase

27: wait for (𝑛 − 𝑓 ) votes in 𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙 .𝑞𝑐:

28: if len(𝑣𝑜𝑡𝑒𝑠) − 1 > 𝑟𝑜𝑢𝑛𝑑 then
29: 𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙 ← ⊥
30: continue
31: 𝑣𝑎𝑙𝑢𝑒 ← 𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙 .𝑣𝑎𝑙

32: 𝑐𝑜𝑚𝑚𝑖𝑡𝑄𝐶 ← QC(𝑣𝑒𝑟𝑠𝑖𝑜𝑛, 𝑟𝑜𝑢𝑛𝑑, 𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙 .𝑞𝑐)

value reaches a supermajority, a new round is started and all repli-

cas can vote again in this new round. The replicas are only allowed

to vote on the current winner in round 0 in their view. Because each

replica might have different views on the current set of votes in

round 0, there can still be multiple values in the next round without
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any supermajority for a single value. Another factor is Byzantine

nodes trying to halt the system by voting not according to the rules.

However, the set of possible values to vote on gets smaller with

every round, and eventually the view of all the replicas on the votes

in round 0 will become the same, and the winning value can be

chosen unanimously. The reason for this is that a replica will not

only gossip 𝑣𝑜𝑡𝑒𝑠 [𝑖] in a certain round, but also all votes for the

previous rounds. This means that when two replicas disagree with

each other in a certain round, once they communicate with each

other, they will learn each other’s state and in the next round they

will both vote for the same value (as their views on 𝑣𝑜𝑡𝑒𝑠 [0] will be
the same). Malicious replicas can try to shift the balance to violate

liveness, but with each round they have less possibility to do so,

because when they gossip 𝑣𝑜𝑡𝑒𝑠 [𝑖] they also gossip the previous

rounds which should show why they voted on a certain value. If

a replica detects that another replica is Byzantine, it will exclude

this Byzantine replica permanently, and its votes do not count any-

more. A replica can act Byzantine by sending invalid state, invalid

signatures, or by voting on a value which can impossibly be the

winner in round 0. We prove the correctness of this approach in

Section 3.3.

Once a replica observes that a supermajority of the replicas

supports a single value, it starts working on a proposed quorum

certificate to determine if at least a supermajority of the replicas

also knows about this. In the example in Figure 1, at 𝑡3 both replica

𝐵 and replica 𝐷 observe a supermajority for value 5, and they start

creating a new proposed quorum certificate. At 𝑡5, replica 𝐷 has

a proposed quorum certificate signed by a supermajority of the

replicas. This means that the new value 5 can be committed. The

proposed quorum certificate becomes the new quorum certificate

and the 𝑣𝑜𝑡𝑒𝑠 are removed. When another replica now receives

the state of replica 𝐷 , that replica will notice that it has a value

associated with a valid quorum certificate with a larger version

number as his own. Therefore, it will accept this new value and

remove all of its own votes and the proposed certificate if any.

Optimistic fast path. For brevity, we did not show the actual

verification of signatures in Algorithm 2. However, in the basic

protocol, each time a new signature is received, it needs to be

verified. This can become quite costly, and therefore MobBFT will

use an optimistic approach. MobBFT will delay the verification of

any incoming signatures and will just accept and replicate them,

until a decision needs to be made, such as starting a new round or

starting to create a new proposed quorum certificate. Only then, all

signatures will be verified in one batch. If all signatures are valid,

the protocol can continue as normal. If there are invalid signatures,

then those will be removed and MobBFT will continue to collect

more signatures. However, MobBFT will remember this occurrence

and from now on verify all signatures once they come in. Once

consensus is reached for this version, MobBFT will move back to

the optimistic fast path. This hybrid approach enables very fast

consensus when all replicas are honest, while gracefully degrading

to a slower, more costly protocol that can detect which replicas are

actively acting Byzantine.

3.3 Safety and Liveness
This section sketches the proof that the algorithm provides safety

and liveness. The protocol described before guarantees both safety

and liveness when there are at least 2𝑓 + 1 honest replicas available.

3.3.1 Safety. The safety property is defined as non-divergence.

Lemma 3.1 (Non-divergence). Let ℜ be a cluster of 𝑛 replicas
with 𝑓 Byzantine nodes and with 𝑛 > 3𝑓 . If replicas 𝑅1, 𝑅2 ∈ ℜ are
able to construct quorum certificates 𝑞𝑐1 and 𝑞𝑐2 for value 𝑣𝑎𝑙1 and
𝑣𝑎𝑙2 respectively with 𝑞𝑐1 𝑣𝑒𝑟𝑠𝑖𝑜𝑛 = 𝑞𝑐2 𝑣𝑒𝑟𝑠𝑖𝑜𝑛 , then 𝑣𝑎𝑙1 = 𝑣𝑎𝑙2.

Wewill first prove this for the simplified case when both quorum

certificates belong to the same round, and we will then prove that

once a quorum certificate can be constructed, no more rounds can

be started.

Lemma 3.2. If replicas 𝑅1, 𝑅2 ∈ ℜ are able to construct quorum
certificates 𝑞𝑐1 and 𝑞𝑐2 for value 𝑣𝑎𝑙1 and 𝑣𝑎𝑙2 respectively with
𝑞𝑐1 𝑣𝑒𝑟𝑠𝑖𝑜𝑛 = 𝑞𝑐2 𝑣𝑒𝑟𝑠𝑖𝑜𝑛 and 𝑞𝑐

1 𝑟𝑜𝑢𝑛𝑑 = 𝑞𝑐
2 𝑟𝑜𝑢𝑛𝑑 , then 𝑣𝑎𝑙1 =

𝑣𝑎𝑙2.

Proof. Assume two different replicas𝑅1 and𝑅2 have constructed

a quorum certificate 𝑞𝑐1 and 𝑞𝑐2 for value 𝑣𝑎𝑙1 and 𝑣𝑎𝑙2 respectively

with 𝑞𝑐1 𝑣𝑒𝑟𝑠𝑖𝑜𝑛 = 𝑞𝑐2 𝑣𝑒𝑟𝑠𝑖𝑜𝑛 and 𝑞𝑐
1 𝑟𝑜𝑢𝑛𝑑 = 𝑞𝑐

2 𝑟𝑜𝑢𝑛𝑑 . They are

constructed in the same round, so of the 𝑛 possible votes, at least

𝑛 − 𝑓 replicas have voted on 𝑣𝑎𝑙1, and at least 𝑛 − 𝑓 replicas have

voted on 𝑣𝑎𝑙2. Honest replicas will never vote twice in the same

version and round. Therefore, at least 𝑛 − 2𝑓 honest replicas have

voted on 𝑣𝑎𝑙1 and 𝑛 − 2𝑓 different honest replicas have voted on

𝑣𝑎𝑙2. In total, we have (𝑛 − 2𝑓 ) + (𝑛 − 2𝑓 ) + 𝑓 ≡ 2𝑛 − 3𝑓 repli-

cas that have voted. We defined 𝑛 ≥ 3𝑓 + 1 before, which gives

2𝑛 − 3𝑓 ≥ 3𝑓 + 2 ≥ 𝑛 + 1 replicas. This is a contradiction, there
need to be at least 𝑛 + 1 replicas to construct two such certificates

for different values, however, we only have 𝑛 replicas. So the two

values 𝑣𝑎𝑙1 and 𝑣𝑎𝑙2 have to be equal. □

Lemma 3.3. If replicas 𝑅1, 𝑅2 ∈ ℜ are able to construct quorum
certificates 𝑞𝑐1 and 𝑞𝑐2 for value 𝑣𝑎𝑙1 and 𝑣𝑎𝑙2 respectively with
𝑞𝑐1 𝑣𝑒𝑟𝑠𝑖𝑜𝑛 = 𝑞𝑐2 𝑣𝑒𝑟𝑠𝑖𝑜𝑛 , then 𝑞𝑐1 𝑟𝑜𝑢𝑛𝑑 = 𝑞𝑐

2 𝑟𝑜𝑢𝑛𝑑 .

Proof. Assume two different replicas𝑅1 and𝑅2 have constructed

a quorum certificate 𝑞𝑐1 and 𝑞𝑐2 for value 𝑣𝑎𝑙1 and 𝑣𝑎𝑙2 respectively

with 𝑞𝑐1 𝑣𝑒𝑟𝑠𝑖𝑜𝑛 = 𝑞𝑐2 𝑣𝑒𝑟𝑠𝑖𝑜𝑛 and 𝑞𝑐
1 𝑟𝑜𝑢𝑛𝑑 < 𝑞𝑐

2 𝑟𝑜𝑢𝑛𝑑 . Since 𝑞𝑐1
is accepted, at least 𝑛 − 𝑓 replicas vote on the proposed quorum cer-

tificate and at least 𝑛 − 𝑓 replicas voted on 𝑣𝑎𝑙1 in round 𝑞𝑐
1 𝑟𝑜𝑢𝑛𝑑 .

The fact that𝑛− 𝑓 replicas voted on the proposed quorum certificate

means that at least 𝑛 − 2𝑓 honest replicas observed 𝑛 − 𝑓 votes for

𝑣𝑎𝑙1. Of those votes, at least 𝑛− 2𝑓 are coming from honest replicas.

The only way to now construct a quorum certificate 𝑞𝑐2 for 𝑣𝑎𝑙2 is

to start a new round. To start a new round, a replica needs to not

have voted for the proposed quorum certificate 𝑞𝑐1, and observe

a different winning value 𝑣𝑎𝑙2. Yet, at least 𝑛 − 2𝑓 honest replicas

observed that at least 𝑛 − 2𝑓 honest replicas think that 𝑣𝑎𝑙1 is the

winning value. This leaves only 2𝑓 replicas who can prefer another

value 𝑣𝑎𝑙2. By definition we have 𝑛 ≥ 3𝑓 + 1. This means that in the

worst case, 𝑓 + 1 honest replicas observe 𝑓 + 1 honest replicas think-
ing 𝑣𝑎𝑙1 is the winning value, together with 𝑓 Byzantine replicas.

Value 𝑣𝑎𝑙2 has only 2𝑓 supporting replicas, which is not enough to

start a proposed quorum certificate. So, at least one replica currently
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supporting 𝑣𝑎𝑙1 needs to switch votes in a future round. However,

once a replica has voted for a proposed quorum certificate, it will

not change their opinion unless it is convinced that a new valid

round is started. So once 𝑛 − 2𝑓 honest replicas are locked on a

value, by voting on a proposed quorum certificate, it is impossible

that a valid new round can be started. □

3.3.2 Liveness. The liveness property is defined as termination.
When a new value is proposed, eventually the protocol will end

and a valid quorum certificate is created for a new value. This

value is not necessarily the first proposed value, and it is not even

guaranteed that a specific value ever gets committed as long as

other values continue to be proposed. Safety is always chosen over

liveness. When there are not enough honest replicas online to reach

a supermajority, no consensus can be reached and the protocol will

simply block and wait for more votes. However, all those replicas do

not need to be online at the same time, since the state is replicated

to all available replicas over time, and votes can be verified by all

replicas in the end.

Lemma 3.4 (Termination). If an honest replica 𝑅 ∈ ℜ creates a
proposal 𝑝 for a new value 𝑣𝑎𝑙 , eventually the replica will be able to
construct a valid quorum certificate 𝑞𝑐 .

Lemma 3.5. If only a single replica 𝑅 ∈ ℜ creates a proposal 𝑝
for a new value 𝑣𝑎𝑙 , eventually the replica will be able to construct a
valid quorum certificate 𝑞𝑐 .

Proof. As there is only a single proposed value, all honest repli-

cas who observe this will cast their vote for that value. Eventually,

one replica will observe 𝑛 − 𝑓 votes for 𝑣𝑎𝑙 and a new proposed

quorum certificate will be constructed. Eventually, 𝑛 − 𝑓 votes will

be cast to this proposed quorum certificate and a valid quorum

certificate 𝑞𝑐 is constructed and 𝑣𝑎𝑙 is committed. □

Lemma 3.6. If 𝑥 replicas 𝑅1..𝑥 ∈ ℜ create proposals 𝑝1..𝑥 for values
𝑣𝑎𝑙1..𝑥 , and no Byzantine replicas vote twice in the same round, even-
tually the replica will be able to construct a valid quorum certificate
𝑞𝑐 .

Proof. Either a single value reaches a quorum, in which case

the previous lemma holds. Or a split vote occurs and a new round

will be started after 𝑛 − 𝑓 votes are observed. All replicas will

base their vote for this new round on the winning value that they

observed from round 0. At least 𝑛 − 𝑓 votes are known, and only 𝑓

votes are still unknown. As long as not all votes are known to all

voting replicas, the winning value might change. In each new round,

either an unknown vote stays unknown, or it becomes known. In

the former case, then the currently known votes will all be the

same, and a proposed quorum certificate can be started. In the latter

case, one extra vote is known, which might again result in the

system ending up in a split vote, and a new round will be started.

However, this last case can only happen at most 𝑓 times. After 𝑓 + 1
rounds, all replicas will have voted in round 0, and every replica

will observe the same winning value, and a quorum certificate can

be created. □

Lemma 3.7. If 𝑥 replicas 𝑅1..𝑥 ∈ ℜ create proposals 𝑝1..𝑥 for values
𝑣𝑎𝑙1..𝑥 , eventually the replica will be able to construct a valid quorum
certificate 𝑞𝑐 .

Proof. If no Byzantine replicas vote twice in the same round,

or only a single value is proposed, the previous two lemmas hold. If

a split vote occurs, a new round will be started after 𝑛 − 𝑓 votes are

observed. 𝑓 of those votes might belong to Byzantine replicas who

can vote for multiple values. As a new round is only started after

𝑛 − 𝑓 votes, a least 𝑛 − 2𝑓 honest votes are observed. No Byzantine

replica can send conflicting votes to any of those 𝑛 − 2𝑓 honest

replicas, as otherwise those replicas will detect this conflicting vote

and exclude the Byzantine replica. If this happens repeatedly, at

most 𝑓 times, all Byzantine replicas are excluded and the previous

lemma holds. Moreover, no Byzantine replica can continue to vote

on values that are not the winning value. Each replica is only al-

lowed to vote on the winning value or any other value that has at

least support from 𝑓 + 1 replicas in the previous round. All honest

replicas converge to a single value, even with Byzantine replicas

supporting other values. Because the protocol only looks to the

first round to determine the winning value. In the rounds after that,

the 𝑓 Byzantine replicas can support a different value, but if they

do, they will be excluded as 𝑓 < 𝑓 +1. This means that after at most

2𝑓 + 1 rounds, a proposed quorum certificate can be started, which

will be committed. □

4 ARCHITECTURE AND IMPLEMENTATION
This section describes the architecture, deployment, and implemen-

tation of MobBFT. This middleware architecture is key to support

the BFT consensus and synchronization protocol described in the

previous section. MobBFT is fully web-based and can execute in

any recent browser without any plugins. This section first describes

the overall architecture. Then it explains our use of aggregate sig-

natures using BLS to reduce the size of the data. The last subsection

lists several performance optimization tactics.

4.1 Overall architecture
The MobBFT middleware architecture consists of five main com-

ponents (Figure 2): (i) a public interface that offers an API for de-

velopers, (ii) a peer-to-peer network component to communicate

directly with other browsers, (iii) a consensus component to handle

the consensus protocol described in the previous section, (iv) a

membership component to handle all cryptographic operations, and

(v) a store component to save all state to persistent storage.

(i) Public interface. This component provides an API to applica-

tion developers to use this middleware. It provides four functions

to modify the application state:

• GET(key) returns the current value of the atomic register

at the given key,

• SET(key, value) submits a proposal to update the atomic

register at the given key,

• DELETE(key) deletes the atomic register at the given key.

A tombstone is kept for correct replication,

• LISTEN(key, callback) supports reactive programming

by calling the callback with the new value each time a new

value for the register is confirmed by the network.

Apart from those functions, the middleware also provides a con-

structor function to initialize the middleware by passing the fol-

lowing four configuration parameters: the list of all members of

the network together with their public key, the private key of the
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Figure 2: Browser-based architecture of MobBFT.

replica, the URL to the signaling server to set up the peer-to-peer

connections, and an access-control callback to verify state changes.

This access control callback is called before voting for a new pro-

posed value, with both the old and new values as arguments. It

should return a boolean whether to allow this change or not. This

callback enables the implementation of basic access control policies

on the values. One example is to embed the public key of the owner

into the value and requiring each new value to be signed by the

owner. This value can only be changed by the owner, and supports

passing ownership by changing the embedded public key.

(ii) Peer-to-peer network. The P2P Network component manages

the peer-to-peer network and is responsible for the replication of

the state-based CRDTs. Many browser-based replicas are connected

to each other using WebRTC (Web Real-Time Communications).

WebRTC enables a browser to communicate peer-to-peer. However,

to set up those peer-to-peer connections,WebRTC needs a signaling

server to exchange several control messages. Once the connection

is set up, all communication can happen peer-to-peer, without a

central server. Another WebRTC peer-connection can also be used

as a signaling layer, so once a replica is connected to another one,

it can also connect to all of its peers, without the need of a central

signaling server. In our adversary model, this server is assumed to

be trusted. If this signaling server would be malicious, the safety

of the system is not endangered as no actual data is sent to this

central server. However, some peers might not be able to join the

network and the required supermajority might not be reached,

which violates liveness. The use of multiple independent signaling

servers can lower the risk of this happening.

(iii) Consensus. The Consensus component handles the consen-

sus protocol described in Section 3. It maintains a Merkle-tree of

all atomic registers and uses the state-based CRDT framework

Anonymized [11] to replicate the local state to other replicas using

the P2P Network component. The Merkle-tree is constructed using

the Blake3 [68] cryptographic hash function.

(iv) Membership. TheMembership component contains all crypto-

graphic material and is responsible for all cryptographic operations

such as signing and verification of signatures. We use an aggregate

signature scheme called BLS [21]. Section 4.2 provides more details

about the BLS implementation.

(v) Store. At last, the Store component saves all state to the In-

dexedDB database. IndexedDB is a key-value datastore built inside

the browser. Each atomic register and the Merkle-tree are serialized

to bytes and stored there under the respective key. This enables

users to close the browser and continue afterwards without losing

the current state.

G0 and G1 are two multiplicitive cyclic groups of prime order 𝑞.

H0 : {0, 1}∗ → G0 and H1 : {0, 1}∗ → Z𝑞 are hash functions

viewed as random oracles.

(1) Parameters Generation: PGen(𝜅) sets up a bilinear group

(𝑞,G0,G1,G𝑡 , 𝑒, 𝑔0, 𝑔1) as described by [19]. 𝑒 is an efficient

non-degenerating bilinear map 𝑒 : G0 × G1 → G𝑡 . 𝑔0 and 𝑔1
are generators of the groups G0 and G1. It outputs 𝑝𝑎𝑟𝑎𝑚𝑠 ←
(𝑞,G0,G1,G𝑡 , 𝑒, 𝑔0, 𝑔1).

(2) Key Generation: KGen(𝑝𝑎𝑟𝑎𝑚𝑠) is a probabilistic algorithm that

take as input the security 𝑝𝑎𝑟𝑎𝑚𝑠 , generates 𝑠𝑘
$←− Z𝑞 , com-

putes and sets 𝑝𝑘 ← 𝑔𝑠𝑘
1
, and outputs (𝑠𝑘, 𝑝𝑘).

(3) Signing: Sign(𝑠𝑘,𝑚) is a deterministic algorithm that takes as

input a secret key 𝑠𝑘 and a message𝑚. It computes 𝑡 ← H1 (𝑝𝑘),
and outputs 𝜎 ← H0 (𝑚)𝑠𝑘 ·𝑡 ∈ G0.

(4) Key Aggregation: KAgg({(𝑝𝑘𝑖 , 𝑟𝑖 )}𝑛𝑖=1) is a deterministic al-

gorithm that takes as input a set of public key 𝑝𝑘 and the

multiplicity 𝑟 pairs. It computes 𝑡𝑖 ← H1 (𝑝𝑘𝑖 ), and outputs

𝑎𝑝𝑘 ←∏𝑛
𝑖=1 𝑝𝑘

𝑡𝑖 ·𝑟𝑖
𝑖

.

(5) (Multi-)Signature Aggregation: Agg(𝜎1, ..., 𝜎𝑛) is a deterministic

algorithm that takes as input 𝑛 signatures. It outputs 𝜎 ←∏𝑛
𝑖=1 𝜎𝑖 .

(6) Verification: Ver(𝑎𝑝𝑘,𝑚, 𝜎) is a deterministic algorithm that

takes as input aggregated public keys 𝑎𝑝𝑘 ∈ G1, and the re-

lated message𝑚 and signature 𝜎 ∈ G0. It outputs 𝑒 (𝑔1, 𝜎)
?

=

𝑒 (𝑎𝑝𝑘,H0 (𝑚)).

Figure 3: Formal specification of the BLS signature scheme.

4.2 Aggregate signatures using BLS
The consensus protocol in Section 3 is resource-intensive with

respect to aggregation and verification of digital signatures. Sig-

natures must be continuously collected and verified. This means,

in every intermediate state of a transaction, each party needs to

keep track of all incoming signatures and verify them to prevent

malicious scenarios. Persistence, management, and transmission of

these signatures are costly, especially in a browser-based setting.

Therefore, our protocol requires short and compact signatures to

reduce storage and network footprint.

Boneh–Lynn–Shacham (BLS) [21] presented a signature scheme

based on bilinear pairing on elliptic curves. The size of a signature

produced by BLS is compact since a signature is an element of

an elliptic curve group. The aggregation algorithm [20] outputs a

single aggregate signature as short and compact as the individual
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signatures, unlike other approaches that rely on ECDSA, DSA or

Schnorr [76].

Other state-of-the-art BFT systems such as SBFT [35] and Hot-

Stuff [87] also use aggregate or threshold signatures. However, they

use it in a different way. They let the leader compute the aggregate

signature. MobBFT uses a different approach, once a proposed quo-

rum certificate has reached a supermajority of the votes, any replica

can aggregate these into one single aggregated BLS signature.

Efficient aggregation. The protocol described in Section 3 per-

forms a considerable number of signature aggregations. But the

standard scheme is vulnerable to rogue public key attacks. The

state-of-the-art approach [19] to mitigate such attacks is to com-

pute (𝑡1, ..., 𝑡𝑛) ← H1 (𝑝𝑘1, ..., 𝑝𝑘𝑛) for each Agg invocation and

compute 𝜎 ←∏𝑛
𝑖=1 𝜎

𝑡𝑖
𝑖
, where 𝑝𝑘𝑖 is the public key of replica 𝑖 , H1

is a hash function, and 𝜎𝑖 is a signature produced by replica 𝑖 . Al-

though the 𝑡𝑖 values can be cached, the computation of 𝜎 would be

costly. Moreover, Agg does not take as input the same set of public

keys at different states of a transaction in our consensus protocol.

Therefore, we distribute the computations by moving the calcula-

tions of the 𝑡𝑖 and 𝜎
𝑡𝑖
𝑖
values to the signing parties, and as a result,

these computations are performed only once. Now, any replica

can run Agg by only computing 𝜎1 ...𝜎𝑛 . The security properties

of BLS remain intact [19], and we obtain more efficient aggrega-

tions at scale. We provide the mathematical background and formal

specification of the optimized BLS scheme in Figure 3.

4.3 Performance optimization for browsers
This section contains four important performance optimizations to

host this middleware inside web browsers at scale.

Polyglot middleware. WebAssembly is a binary instruction for-

mat that addresses the problem of safe, fast, and portable low-

level code on the Web. Higher-level languages such as C, C++, and

Rust can be compiled to WebAssembly and can be executed in

a modern browser on any platform independent from the under-

lying hardware. WebAssembly executes significantly faster than

JavaScript [39], however, it is not as fast as native code [41]. We

used WebAssembly for two key components that are computation-

ally intensive. These components are the hashing component to

build the Merkle-tree and the BLS module for aggregate signatures.

They are implemented in the Rust programming language [55]

and C respectively, and they are compiled to WebAssembly to run

inside a browser. Besides the performance improvement of We-

bAssembly over JavaScript, using Rust and C also enabled us to use

well-tested libraries (BLAKE3
2
and blst

3
) instead of implementing

these components ourselves.

Parallelization using Web Workers. Web Workers are separate

browser threads, which enable us to run computations off the main

thread to keep the User Interface responsive. The middleware is

distributed over four different threads. The Public interface and

P2P Network components run on the main thread together with

the application. The P2P Network component is also located on the

main thread because WebRTC is not available inside Web Workers.

The other three components: Consensus, Membership and Store, are
2
https://github.com/BLAKE3-team/BLAKE3/

3
https://github.com/supranational/blst/

each located in a separate Web Worker. This enables long-running

computations, e.g., BLS-signature verification, to run in a separate

thread without blocking concurrent operations in the other threads.

Caching. Caching is used in several places for performance rea-

sons. The most important place is in the Membership component in

WebAssembly. While WebAssembly itself is fast, the boundary be-

tween JavaScript and WebAssembly is not. Function calls between

the two environments can only use numbers directly. Any other

data structure has to be serialized to bytes and is allocated a spot

in the WebAssembly memory buffer. In WebAssembly, these bytes

can be decoded to the appropriate Rust or C data structure. For

this reason, all cryptographic material such as public keys and the

private key are passed to WebAssembly at initialization, avoiding

this costly transfer for subsequent operations. In the Consensus
component, all CRDT and Merkle-tree structures are cached in

memory. As such, a costly fetch from disk and decoding from bytes

can be avoided.

Batching of writes for IndexedDB.. The last important optimiza-

tion concerns IndexedDB. IndexedDB is an in-browser database for

structured data supporting fast reads and lookups by using indexes.

We found that when too many write requests are sent to IndexedDB,

the latency significantly starts to increase up to one second or even

more. When one atomic register is updated, also all intermediate

nodes until the root node of the Merkle-tree are updated. This is

due to the tree-shaped structure of the Merkle-tree. So, one write

somewhere down the tree, leads to a cascading of writes, and every

write causes the root node to be written as well. To reduce the high

latency, we batched all writes to IndexedDB in-memory in the Store
component. If multiple writes for the same key happen in the same

batch, only the last one is executed. At fixed intervals, the whole

batch is written to IndexedDB. Since many duplicate writes are

now avoided, the number of writes is reduced significantly. This

solved the problem of high read latency. To avoid data loss, local

update operations by the user or consensus votes on this replica

are immediately written to disk and bypass the write-batching.

5 EVALUATION
We validated the MobBFT middleware with the loyalty points use

case. The first section presents this validation. Next, we present

four different benchmarks with different scales. The first bench-

mark shows the performance results in the optimistic scenario

with no network failure or Byzantine failures. The second bench-

mark evaluates the performance in a more realistic scenario with

some network failures. The third benchmark evaluates the perfor-

mance in the presence of a Byzantine replica. The last benchmark

compares two different implementations of MobBFT. The default

version uses BLS signatures which supports signature aggregation

using WebAssembly as explained in Section 4.2. The other version

uses ECDSA signatures using the built-in native WebCrypto [85]

APIs from the browser.

5.1 Validation in the loyalty points use case
The deployment of the loyalty points use case consists of three

services: a web application running in a browser for each merchant,

a web server to serve the static web application files, and a signaling
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Figure 4: Latency in the optimistic scenario with no failures.

server to set up WebRTC peer-to-peer connections between the

browsers. The web server is optional. Every merchant can also store

those application files themselves and load them from their local

file system. The signaling server is a trusted component. However,

if trust is not present, you can set up multiple signaling servers to

reduce potential misbehavior. No actual data is sent to the signal-

ing server. It is only used to discover other peers on the network.

To have a baseline, we compare MobBFT to two other existing

state-of-the-art systems for BFT consensus: BFT-SMaRt [18, 79]

and Tendermint [23, 24]. BFT-SMaRt is a more traditional BFT pro-

tocol, similar to PBFT [78], where all replicas are connected to each

other, and one leader drives the protocol. If that leader fails, a new

one will have to be elected before any progress can be made. Ten-

dermint [24] uses Gossip for communication between the replicas.

There is still a leader, however, that leader changes frequently.

Test setup. To test the performance of the middleware, we imple-

mented the use case and deployed it on the Azure public cloud. We

used 21 VMs (Azure F8s v2 with 8 vCPUs and 16 GB of RAM) with

one VM acting as a central server running the web server and sig-

naling server. The other VMs are running Chrome browsers inside

a Docker container. Each of those VMs holds one to five browser

instances for different scales of the benchmarks. To simulate a truly

mobile environment, the network is delayed to an average latency

of 60 milliseconds using the Linux tc tool, which simulates the

latency of a 4G network [70]. Every test is executed 10 times to

ensure the results are reliable.

We are interested in the time it takes to confirm a transaction,

experienced by the browser that submitted the transaction. Each

transaction is a group of loyalty points being changed from owner.

For example, a merchant gives some loyalty points to a customer

or a customer redeems their loyalty points with a merchant. In the

evaluation, the browser clients will do one transaction per second.

This throughput is more than enough for the local community-scale

use cases we envision. We compare the latency, network bandwidth,

and disk usage with a different number of browsers. We show a

boxplot of the latency results instead of only the average, as all

users should experience fast confirmation times, and not only the

average user [27].

5.2 Optimistic scenario
In the optimistic scenario, every replica is honest and no replicas

fail, so the fast path can be used. One single aggregate signature is

MobBFT Tendermint BFT-SMaRt
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Figure 5: Network usage in the optimistic scenario with no
failures.

MobBFT Tendermint BFT-SMaRt

10

20

0

25 s

Latency

20 40 60 80 100

# replicas

Figure 6: Latency in the realistic scenario with network fail-
ures.

verified before each decision, avoiding costly signature verifications

after every message. As every replica is honest, this aggregate sig-

nature is correct and the new value can be accepted by all replicas.

Figure 4 shows the latency for the different technologies. For

the use case of loyalty points, transactions must be confirmed fast,

as people are waiting at checkout to receive or redeem loyalty

points. MobBFT can confirm transactions within 4 seconds, even

with a network of one hundred browsers. BFT-SMaRt can confirm

transactions within half a second. This is because all replicas com-

municate directly with each other. However, having all replicas

directly connected to each other is not realistic in a mobile peer-to-

peer network. In contrast, MobBFT and Tendermint use Gossip and

need multiple hops before all replicas are reached. This also causes

the increased latency. Furthermore, BFT-SMaRt uses HMAC to sign

requests, which are an order of magnitude faster than the asym-

metric signatures used in MobBFT and Tendermint. We can see a

similar pattern in the bandwidth requirements shown in Figure 5.

In the large-scale scenario with 100 browsers, MobBFT uses less

than 3 Mbit/s, which is acceptable for a typical mobile network.

5.3 Realistic scenario
The same benchmark is now repeated with 25% of the replicas

failing during the benchmark. A failure is simulated by dropping

all network packets to and from that replica. Replicas fail one by

one, with a 5-second delay between each failure. As all systems are

Byzantine fault tolerant, they should be able to tolerate up to 33%

of the replicas failing or acting Byzantine.
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Figure 7: Comparison of the latency in the normal scenario
with one where a Byzantine replica tries to halt the network.

Figure 6 shows the latency in this scenario. MobBFT is not im-

pacted much by the failing replicas and can still confirm transac-

tions within 5 seconds. The impact on Tendermint is also small, but

the latency is doubled to about 10 seconds. BFT-SMaRt however

needs to use a costly leader election protocol when the current

leader fails. This process takes some time, during which no trans-

action can be committed. Once a leader is chosen, the same fast

performance can be achieved again. This behavior is clearly visible

in Figure 6. The median latency of BFT-SMaRt is not affected by

the failures, however, the tail latency increases to 27 seconds for

the scenario with 80 replicas. It cannot handle the case with 100

replicas. BFT-SMaRt is unable to handle large network sizes when

the latency between the nodes is higher than usual, e.g., in geo-

distributed systems or on mobile networks. This has been shown in

the literature before [22]. Tendermint does have a leader, but it is

rotated round-robin all the time. This makes the failure of a leader

less severe, as a new one will quickly be elected anyway.

5.4 Byzantine scenario
For MobBFT, we performed an extra benchmark with Byzantine

replicas. As long as the honest replicas are still using the optimistic

fast path, the Byzantine replicas will send extra invalid signatures.

As the signatures are only verified when a supermajority is reached,

the honest replicas only realize this at the end, and they cannot find

out which replicas are Byzantine. Once the optimistic fast path is

disabled, the signatures are verified for every message, so malicious

replicas can be detected and excluded from the network. In this

case, the Byzantine replicas keep the signature intact to avoid being

detected. However, they will try to slow down the consensus by

not voting themselves.

The latency in this Byzantine scenario is shown in Figure 7. Mob-

BFT can handle Byzantine replicas very well for smaller networks,

however, for networks of size 100 replicas, the tail latency becomes

7 seconds. Which might already be quite high for the use case of

loyalty points. We did not test the effect of Byzantine replicas for

BFT-SMaRt or Tendermint. As they do not use a fast path when ev-

eryone is honest, the impact is less. However, if the current elected

leader happens to be Byzantine, it can delay the consensus until

some timers end and a new leader is elected [7].
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Figure 8: Comparison of the latency in the normal scenario
between the use of BLS signatures in WebAssembly and the
ECDSA signatures the browser provides.
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Figure 9: Average disk usage for MobBFT.

5.5 Benefits of BLS vs ECDSA
MobBFT uses BLS signatures to limit both the overhead of signature

verification and storage. With BLS, only one aggregate signature of

the 𝑞 replicas needs to be verified, compared to 𝑞 separate signature

verifications for ECDSA. Figure 8 (notice the log-scale) compares

the latency of the default implementation using BLS signatures

with an alternative implementation using ECDSA signatures. The

ECDSA implementation performs well for small networks but needs

too much time in the larger networks with 80 and 100 replicas.

The BLS signature verifications are performed using WebAssem-

bly. While WebAssembly can be much faster than JavaScript, the

resulting WebAssembly code is still an order of magnitude slower

compared to a native variant in x64 assembly (which cannot be exe-

cuted on the web). For the ECDSA signatures on the other hand, we

used the built-in Web Cryptography API. These are implemented

in the browser using native functions. But even with the more op-

timized implementation of ECDSA, the version of MobBFT using

BLS and WebAssembly is much faster for larger networks. In the fu-

ture, browsers could add the BLS signature scheme natively, which

would result in even better performance for MobBFT.

Figure 9 shows the storage usage for both implementations of

MobBFT. BLS improves disk usage about 20 times for the scenario

with 100 browsers. Both implementations need less than 5 MB to

store 1000 tokens. This disk usage does not increase over time,

as only the current value and proposals are stored. We do not

store a chain of all transactions that have happened so far. This

is a big difference with blockchains that grow in size with every

transaction that is executed and stored in the blockchain. This

makes our approach feasible for resource-constrained devices that
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do not have hundreds of gigabytes of storage capacity to store a

full blockchain. At the cost of losing auditability.

5.6 Discussion and conclusions
We have shown that MobBFT can be used for the loyalty points

use case with up to 100 different merchants, even when some of

them are acting maliciously. MobBFT can achieve similar laten-

cies as other Gossip-based BFT protocols, such as Tendermint. Our

evaluation also shows the trade-offs that MobBFT makes. In an op-

timal scenario where there is a good connection available between

all replicas and no network disruptions or crashes happen, then

a classical leader-based protocol such as BFT-SMaRt will outper-

form MobBFT. However, as we mention in the introduction, we

envision a more ad-hoc network between low-end devices on a

residential or even a mobile network, where short-term disruptions

are common. Our evaluation shows that MobBFT is very robust

against this kind of setting and achieves similar performance as in

the optimal scenario. A leader-based protocol such as BFT-SMaRt

is not well suited, the temporary failure of a leader leads to long

commit times, and even total failure for larger network sizes. This

leader also needs more resources and a direct connection to every

other replica. Keeping 100 WebRTC connections open in a browser,

while theoretically possible, drastically reduces performance. Mob-

BFT does not impose this, consensus can be reached gradually over

time, as the full state of the proposals and votes propagates through

the network. MobBFT can confirm transactions fast, in the order

of seconds, without needing a complex back-end setup or wasting

a lot of energy. MobBFT has a small storage footprint due to its

state-based nature.

6 RELATEDWORK
Several client-side frameworks for data synchronization between

web applications exist: Legion [82], Yjs [66, 67], Automerge [44],

and Anonymized [11]. They make use of various kinds of Conflict-

free Replicated Data Types (CRDTs) [77] to deal with concurrent

conflicting operations, and can synchronize data peer-to-peer. They

are easy to set up and only require a browser and a peer-to-peer

discovery service. However, they assume trusted operation as the

default setting. Some work has been done in a semi-trusted set-

ting [12, 83]. None of them can tolerate Byzantine parties.

WebBFT [16] shares a similar vision of client-centric, decen-

tralized web applications. However, instead of running the BFT

protocol directly between browsers, they only interface to a back-

end BFT-SMaRt cluster.

Open or permissionless blockchains such as Bitcoin [64] and

Ethereum [25] allow everyone to participate and use Proof-of-

Work (PoW) to reach agreement over the ledger [38]. However,

PoW has several flaws [15]. PoW uses a lot of processing power and

energy [69] and performs poorly in terms of latency. It assumes a

synchronous network to guarantee safety. When this assumption

is violated, temporary forks can happen in the blockchain as live-

ness is chosen over safety. Therefore, PoW blockchains do not offer

consensus finality, instead one needs to wait for several consecu-

tive blocks to be probabilistically certain that a transaction cannot

be reverted. Blockchains require a lot of storage space, as the full

blockchain typically needs to be stored on every node. Simplified

Payment Verification (SPV) mode [64] for clients can reduce the re-

source usage at the cost of decentralization. PoW gains its security

from the fact that one needs a lot of CPU power to control the net-

work, which is too costly for an attacker compared to the revenue

for a successful attack. Other variants of resource consumption

exist, such as Proof-of-Space [4] or Proof-of-Storage [5].

ByzCoin [46] uses PoW for a separate identity chain to guard

against Sybil attacks but uses a BFT protocol to order transactions.

ByzCoin makes use of collective signatures (CoSi) [80] and a bal-

anced tree for the communication flow. CoSi makes use of aggregate

signatures by constructing a Schnorr multisignature [76]. However,

CoSi needs multiple communication round-trips to generate the

multi-signature and assumes a synchronous network. Similar to

ByzCoin, Solida [1] only uses PoW to define who is a committee

member, and uses a BFT protocol between the current committee

members for the actual consensus.

Tendermint [23, 24], used in Cosmos [48], uses Proof-of-Stake (PoS),

where voting power is based on the amount of cryptocurrency

owned by each replica. Because block times are short, in the order

of seconds, there is a limited number of validators Tendermint can

have because finality needs to be reached for each block. It is also

not resistant to cartel forming, which allows those with a lot of

cryptocurrencies to work together to control the network.

Instead of reaching consensus between all the replicas of the

network, Stellar [53, 56] uses quorum slices to reach federated

Byzantine agreement in an open network. Replicas should choose

adequate quorum slices for safety. However, today’s Stellar network

is highly centralized and many replicas use the same few validators.

Two failing validators can make the entire system fail [63].

Other protocols use a randomized approach. Ouroboros [43],

HoneyBadger [62], Dumbo [36] and BEAT [28] use distributed coin

flipping for consensus. HoneyBadger [62] also uses threshold sig-

natures [78] for censorship resilience. Algorand [34] uses Verifiable

Random Functions [60] to select a random committee for the next

round. Avalanche [74, 75] uses meta-stability to reach consensus

by sampling other replicas without any leader. While Avalanche

is lightweight and scalable, it needs to be able to sample all other

validators directly. The number of connections one can open in

a browser without performance loss is limited. MobBFT supports

propagation of votes over multiple hops.

Permissioned blockchains such as Hyperledger Fabric [3] have

closed membership and often use a BFT consensus protocol to

order transactions. For example BFT-SMART in HyperLedger Fab-

ric [18, 79]. The first known BFT protocol is Practical Byzantine

Fault Tolerance (PBFT) [26]. Other protocols bring improvements

to the original PBFT protocol. Zyzzyva [47] uses speculative ex-

ecution which improves latency and throughput if there are no

Byzantine replicas. However, its performance drops significantly

if this premise does not hold. 700BFT [6] provides an abstraction

for these BFT algorithms. These protocols are targeting a small

number of replicas in a local network. They generally work in two

phases: the first guarantees proposal uniqueness, and the second

guarantees that a new leader can convince replicas to vote for a

safe proposal. HotStuff [87] proposed a three-phase protocol to

reduce complexity and simplify leader replacement. This makes

HotStuff more scalable. All these algorithms use a leader to drive

the protocol. When the leader is malicious, the performance can
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degrade quickly [7]. GeoBFT [37] is a topology-aware, decentral-

ized consensus protocol, designed for geo-distributed scalability.

MobBFT does not use a leader and replicas communicate only to a

subset of the other replicas using a gossip-like protocol. There is

not a fixed number of communication rounds to reach consensus in

MobBFT. Instead, the PRE-COMMIT phase can consist of multiple

rounds in which the replicas communicate with each other until

one unique proposal is chosen.

Another approach is to use a trusted hardware component [13,

42, 52, 84, 88]. These are faster and less computationally intensive

but require specialized hardware to be present. Moreover, trusted

execution environments have been broken in the past [45, 51, 81].

There are several proposals to improve the performance and

response time of Hyperledger Fabric. StreamChain [40] reaches

consensus over a stream of transactions instead of blocks. Fabric-

CRDT [65] uses CRDTs to support concurrent transactions to occur

in the same block, using the built-in conflict resolution of CRDTs

to resolve the conflict automatically. Other approaches also borrow

from CRDTs: PnyxDB [22] supports commuting transactions to be

applied out-of-order. A novel design for gossip in Fabric [14] im-

proves the block propagation latency and bandwidth. While these

improvements make Hyperledger Fabric faster, none of them try to

reduce the infrastructure requirements to be able to easily set up

an untrusted peer-to-peer network.

The Bitcoin Lightning Network [72] or state channels for Bit-

coin [50] or Ethereum [58, 61, 71] are off-chain protocols that run

on top of a blockchain. A new state channel between known par-

ticipants is created by interacting with the blockchain. After its

creation, participants can use this channel to execute state transi-

tions by collectively signing the new state. These transactions do

not involve the blockchain and have fast confirmation times and no

transaction costs. However, state channels assume all participants

to be always online and honest. If this is violated, the underlying

blockchain needs to be used to resolve the conflict, or a trusted third

party can be used [57]. MobBFT uses a similar state-transitioning

protocol where only the latest collectively agreed state needs to be

stored. However, MobBFT can tolerate both failing and malicious

replicas, without resorting to a blockchain or a trusted third party.

7 CONCLUSION
In this paper, we presented MobBFT. A browser-based middleware

for decentralized, community-driven web applications. MobBFT

uses an optimistic, leaderless BFT consensus protocol, combined

with a robust and efficient state-based synchronization protocol.

MobBFT uses an optimized BLS scheme for efficient computation

and storage of signatures. It supports a client-centric, browser-

based, state-based, permissioned ledger with a low infrastructure

and storage footprint for small-scale, citizen-driven networks. Mob-

BFT offers consistent and robust confirmation times to achieve final-

ity of transactions in the order of seconds, even in failure settings

and Byzantine environments. In contrast to traditional blockchains,

MobBFT does not store a transaction log or blockchain, keeping

the overall storage footprint small.
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