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Abstract. The web is shifting to a client-centric, decentralized model
where web clients become the leading execution environment for ap-
plication logic and data storage. However, current solutions to build
decentralized web applications with multiple distrusting parties often
involve a decentralized backend of servers running a BFT protocol be-
tween them. In this paper, we present MobBFT, a purely browser-based
platform for decentralized BFT consensus in client-centric, community-
driven web applications. We propose a novel, optimistic, leaderless con-
sensus protocol, tolerating Byzantine replicas, combined with a robust
and efficient state-based synchronization protocol. This protocol makes
MobBFT well suited for the decentralized client-centric web and its dy-
namic nature with many network disruptions or node failures. Using a
state-based protocol, no transaction log is stored, keeping the storage
footprint small for client-centric devices.

1 Introduction

Browsers and client-side web technologies offer increasing capabilities to enable
fully client-side web applications that can operate independently and in a stand-
alone fashion, in contrast to the server-centric model [22I16]. Web 3.0 can be
defined as the decentralized web where users are in control of their data, and
that replaces centralized intermediaries with decentralized networks and plat-
forms. Community-driven, decentralized networks can open the road to many
use cases for the sharing economy [35] or shared loyalty programs for local com-
munities [23]. Such client-centric collaborations can, for example, enable a small
network of merchants in a local shopping street, or at a farmer’s market to set
up a shared loyalty program between the merchants in an ad-hoc fashion. These
small-scale, specialized collaborative networks can empower motivated citizens
to bring value to their local community, without involving an incumbent big-tech
company that can change the rules unilateral at any moment.

However, current state-of-the-art peer-to-peer data synchronization frame-
works for the browser such as Legion [33], Automerge [27], and OWebSync [24]
focus on full replication and eventual consistency between trusted clients. Each
replica can modify all data, and all modifications are automatically replicated
to all replicas. These protocols lack Byzantine Fault Tolerance (BFT). Yet, they
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are easy to set up and trusted parties can quickly use these to synchronize and
modify a shared data set between them.

Decentralized interactions between distrusting parties can be enabled by us-
ing a classical BFT consensus protocol such as PBFT [13], BFT-SMaRt [§],
Tendermint [12], Algorand [I7], Ouroboros [26], or HotStuff [47]. These classical
BFT protocols are very fast and have a high throughput, but typically assume
server-to-server communication with low-latency network connections, and as-
sume every node is connected to all other nodes. Nakamoto consensus [40], used
in several blockchains such as Bitcoin and Ethereum, relaxes this requirement
and only requires a loosely coupled network. However, blockchains based on
Nakamoto consensus are too slow for many use cases. They need minutes, or
even an hour, to confirm a transaction with high probability. Moreover, they
consume a large amount of energy and need a lot of processing power. At last,
Avalanche consensus [42] tries to solve the scalability problem by using the con-
cept of meta-stability. Only a small subset of replicas need to be sampled to
reach consensus. However, you still need a connection to every other replica, as
the replicas that you need to sample change continuously.

Ultimately, a decentralized web application should be able to run in a robust
and resilient way over a network of online client devices such as smartphones.
Such devices have a permanent yet unstable internet connection over a data
subscription, and are operational and reactive most of the time. However, the
existing BF'T consensus protocols are designed for more server-like infrastruc-
ture that has lots of processing power, storage space, and a stable, low-latency
network connection. The motivated citizens in our envisioned use cases do not
have this kind of knowledge, budget, and infrastructure available to set up a
private network of servers running a BFT protocol between them. They rather
want to use their existing hardware such as a low-end computer, or even a mobile
device. They could use a public blockchain network, at the cost of paying a fee
for every transaction, which lowers the economic viability of this approach. A
private network between the citizens without fees is more suitable. This also has
the advantage that not all data is publicly readable by the whole world.

In this paper, we present MobBFT, a novel peer-to-peer data synchroniza-
tion framework for decentralized web applications between mistrusting parties.
MobBFT combines the efficient operation and lightweight setup of a peer-to-peer
data synchronization framework with the resilience and fault tolerance of a BE'T
consensus protocol. The novel BFT protocol, optimized for unstable network
conditions, does not require that all replicas are connected to each other. It also
does not rely on a leader, removing the need for a costly leader-election proce-
dure when this leader is malicious or loses its network connection temporary.
The latter scenario is common in our target environment. Each browser replica
only maintains the current authenticated state, and does not need to keep track
of an operation log or transaction history, keeping the storage footprint small.
To further reduce the storage and bandwidth requirements, we use an aggregate
signature scheme called BLS [1I0]. This also reduces the computational require-
ments when all replicas are honest, as only a single aggregate signature has
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to be verified. The authenticated state and consensus votes are replicated over
multiple hops using a gossip protocol.

This paper is structured as follows. Section [2| presents MobBFT’s lightweight
BFT consensus protocol and the state-based replication strategy. The detailed
web-based middleware architecture of MobBFT is elaborated in Section [38l Our
evaluation in Section [ focuses on many aspects of performance in both the opti-
mistic scenario as well as more realistic and even Byzantine scenarios. Section [5]
elaborates on important related work. We conclude in Section [6]

2 State-based BFT protocol

This section explains the state-based consensus protocol used in MobBFT. First,
it describes the adversary model and its properties. Then it explains the protocol
specification[l]

Overview and adversary model. The protocol is a partially synchronous [15],
leaderless, Byzantine fault tolerant consensus protocol. An adversary might cor-
rupt up to f replicas of the n > 3f + 1 total replicas. They can deviate from the
protocol in any arbitrary way. Such replicas are called Byzantine, while the repli-
cas that are strictly following the protocol are called honest. We assume attackers
are computationally bounded and it is infeasible to forge the used asymmetric
signatures or find collisions for the used cryptographic hash functions.

The protocol is used to implement a register [31] that can hold a single value
that can be read and written by multiple replicas. All writes are atomic, meaning
that only a single state transition can happen at any time. Extra application-
level conditions can be applied to limit who can write to it, and which values
are acceptable given the previous value. MobBFT does not use a leader to co-
ordinate the protocol, removing a common single-point-of-failure compared to
many existing BFT protocols. In such leader-based protocols, the failure of a
leader leads to a long delay before consensus can be reached. The set of replicas
is fixed, and changes to the replica set have to be made outside the protocol.
Consensus is reached for each register separately, which means that each register
has its own instance of the MobBFT protocol.

Formal properties. Let R be a cluster of n replicas with f Byzantine replicas
and n > 3f + 1. MobBFT guarantees the following properties:
— Non-divergence: If replicas R;, Ry € R are able to construct quorum cer-
tificates gcy for value val; and gesy for value vals at view v, then valy = vals.
— Termination: If an honest replica R € JR proposes a new value at view v,
eventually every replica will be able to construct a quorum certificate gc for
some value at view v.

! For reviewing purposes, the interested reviewer can find a formal safety
and liveness proof of this protocol here: https://kristofjannes.com/reports/
MobBFT-safety-and-liveness.pdf. We did not include it due to space constraints.
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The first property is a safety property and guarantees that all state changes
are atomic for the whole network. The second property is a liveness property
and guarantees that non-conflicting transactions will be eventually executed by
all replicas. Notice that the value that is committed in this property is not
necessarily the originally proposed value. It is not guaranteed that a value will
be committed, as long as other concurrent values are proposed as well.

Protocol specification. The specification of the protocol is shown in Algo-
rithm [1} Each register has its own state which consists of three parts. The first
part is the current value and a quorum certificate. The quorum certificate con-
tains signatures of a supermajority of n — f replicas, and proves the validity of
the value. The second part is a map, which maps rounds to a collection of votes
for the next value. In each round, there can be multiple proposed values. The
third part consists of a new proposed value and a partial quorum certificate for
that value. This state is shown at the first 5 lines of Algorithm

Consensus is reached in two steps, first a supermajority needs to be reached
in the last round of the votes, then a supermajority needs to be reached for the
next quorum certificate. The first step will establish a resilient quorum, while
the second step will guarantee that sufficiently many replicas know that such a
quorum has been achieved.

Reading and writing. When reading the value of a register, it will return the
currently accepted value. This request is always executed on the local replica
and does not involve any network requests. To write a new value, a replica has
to propose a new value to the other replicas. This process is the PREPARE phase
in Algorithm [I} The proposing replica adds the new value and its vote to round
0 of votes. As the protocol is leaderless, any replica can be a proposing replica
and multiple replicas can propose a new value simultaneously. Replicas are only
allowed to vote once in each round for each view, so if the replica already voted
for another value in that round, it will have to wait until consensus is reached
for the current set of votes, and propose the new value for the view after it.

State-based replication protocol. The full state is replicated by using a state-based
Gossip protocol. Each time a new state is received, the local state is merged with
the remote state. This protocol is a peer-to-peer version of OWebSync [24], which
uses state-based Conflict-free Replicated Data Types (CRDTs) [43] combined
with a Merkle-tree [37] to efficiently replicate the updated state. The CRDTs
being used are Observed-Removed Maps [24] and Grow-only Sets [43]. There
are extra constraints imposed on the CRDTs due to the Byzantine nature. The
Merkle tree is used to efficiently replicate the state between any two replicas. If
the state of two replicas is the same, only the root hash is sent and compared,
which limits the network usage. If the states differ, the protocol descends in
the tree looking for mismatching hashes to find out which registers must be
synchronized. By using a state-based approach, rather than the operation-based
approach of operation-based CRDTs [43], blockchains [40], or traditional BFT
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Algorithm 1 Basic protocol (for replica r).

1: value < L > Current accepted value
2: commitQC + L > Quorum certificate for value
3: for view + 1,2,3,... do

4: votes <+ () > round — votesInRound

5: nextCommitQC + ()
> PREPARE phase

6: as a proposing replica:

T wait for value val from client

8: votes[0] + {vOTE(view, 0, val, PRE-COMMIT) }
9: as a non-proposing replica:
10: walit for any value in votes

11: for round <+ 0,1,2,3,... do
> PRE-COMMIT phase

12: if -HASVOTED (votes[round]) then
13: val < WINNING VALUE (votes[0])
14: votes[round] < votes[round] U {vOTE(view, round, val, PRE-COMMIT) }
15: wait for (n — f) votes in votes[round]
16: val + WINNING VALUE (votes[round))
17: valVotes < VOTESFORVALUE(votes[round], val)
18: if LEN(valVotes) > (n — f) then
19: nextCommitQC + nextCommitQCU{voTE(view, round, val, COMMIT)}
20: else
21: val <— WINNING VALUE (votes|[0])
22: votes[round + 1] + {VOTE(view, round + 1, val, PRE-COMMIT) }
23: continue
> COMMIT phase
24: wait for (n — f) votes in nextCommitQC:
25: if LEN(votes) — 1 > round then
26: nextCommitQC + ()
27: continue
28: value < VALUE(nextCommitQC)
29: commitQC <+ nextCommitQC

30: function WINNING VALUE(votesInRound)

31: return argmaz,qLEN({v € votesInRound : v.val = val})
32: function VOTESFORVALUE(votesInRound, val)
33: return {v € votesInRound : v.val = val}

34: function HASVOTED(votesInRound)

35: return 3 v € votesInRound : v.r =1

36: function VOTE(view, round, val, type)

37: return VOTE(val, r, SIGN(view, round, val, type, ))
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protocols, we only need to store the current state together with some metadata.
There is no need to store the full log of all operations to later convince replicas
that were temporarily offline of the new state. Replicas also do not need to keep
track of the state of other replicas, or which messages are already received by
which replica. If a new value and quorum certificate with a higher view are
received, then the protocol will accept the new state, and the protocol will reset
back to line 3 of Algorithm [T|with that newer view. Note that we do not explicitly
show the gossiping in Algorithm [I] to keep the algorithm compact. During all
phases in the algorithm, the state is continuously replicated to the other replicas.

Consensus. Consensus about which value will be accepted in a view is reached
in two phases, called PRE-coMMIT and coMMIT in Algorithm |1l Honest replicas will
always vote for the value with the most votes in round 0. If a round has reached
a supermajority of votes for a single value, then no new round can be started
anymore, and the replicas will start creating a new quorum certificate. If a
supermajority of the replicas have voted in a round, but not a single value
reaches a supermajority, a new round is started and all replicas can vote again
in this new round. The replicas are only allowed to vote on the current winner
in round 0 according to their local state. Because each replica might have a
different state on the current set of votes in round 0, there can still be multiple
values in the next round without any supermajority for a single value. Another
factor is Byzantine nodes trying to halt the system by voting not according
to the rules. However, the set of possible values to vote on gets smaller with
every round, and eventually the view of all the replicas on the votes in round 0
will become the same, and the winning value can be chosen unanimously. The
reason for this is that a replica does not simply send a message with his vote to
the others, but instead gossips the entire state. This includes all votes for the
previous rounds. This means that when two replicas disagree with each other in
a certain round, once they communicate with each other, they will learn each
other’s state. In the next round they will both vote for the same value (as their
local state of votes[0] will be the same). Malicious replicas can try to shift the
balance to violate liveness, but with each round they have less possibility to do
so. Because when they gossip votes[i] they also gossip the previous rounds which
should show why they voted on a certain value. If a replica detects that another
replica is Byzantine, it will exclude this Byzantine replica permanently, and its
votes do not count anymore.

Ezample. An example of this replication process is shown in Fig.[I] There are four
non-Byzantine replicas with an empty set of votes and empty nextCommitQC.
The scenario starts at to with replica A proposing a new value v (line 7-8 of
Algorithm . The state is replicated to the other replicas randomly. In the
example, the state is gossiped to replica B and C at t;, and those replicas merge
the received state with their local state. Since B and C did not yet vote in this
view and round, they will cast their vote for the current winning value (line 10-14
of Algorithm . This process continues at t5 when replica B sends its state to
replica A and C. At to, replica C observes that a supermajority of the replicas
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A {0 {(v,4)}},0 {0 {(v,4)}},0 {0={(v,4), (v, B)}},0

B 0,0 \{0 — {(U,A)7(U,B)}},®( {0 {(v, A), (v, B)}},0

c 0,0 {0={(v,4), (v,C)}},0 {0={(v, 4), (v, B), (v, O)}}, {(v, O)}
D

0,0 0,0 0,0
to t1 to

Fig. 1. Example of the state-based synchronization with 4 replicas A, B,C, D. Only
the current votes and nextCommitQC are shown. Arrows represent a state transfer.

support value v, and it starts working on a new quorum certificate to determine
if at least a supermajority of the replicas also knows about this (line 16-19 of
Algorithm .

Delaying signature verification. For brevity, we did not show the actual verifi-
cation of signatures in Algorithm [} However, in the basic protocol, each time a
new signature is received, it needs to be verified. This can become quite costly,
and therefore MobBFT will use a fast path and delay the verification of any
incoming signatures. MobBFT will just accept and replicate them, until a de-
cision needs to be made, such as starting a new round or starting to create a
new proposed quorum certificate. Only then, all signatures will be verified in one
batch. If all signatures are valid, the protocol can continue as normal. If there
are invalid signatures, then those will be removed and MobBFT will continue to
collect more signatures and verify them on arrival. This hybrid approach enables
very fast consensus when all replicas are honest, while gracefully degrading to a
slower, more costly protocol that can detect which replicas are actively acting
Byzantine.

3 Architecture and implementation

This section describes the client-centric architecture, deployment, and imple-
mentation of MobBFT. This middleware architecture is key to support the BFT
consensus and synchronization protocol described in the previous section. Mob-
BFT is fully web-based and written in JavaScript and can execute in any recent
browser without any plugins. This section first describes the overall architecture.
Then it explains our use of aggregate signatures using BLS to reduce the size of
the data.

Overall architecture. The MobBFT middleware architecture consists of five
main components (Fig.|2): (i) a public interface that offers an API for develop-
ers, (ii) a peer-to-peer network component to communicate directly with other
browsers, (iii) a consensus component to handle the consensus protocol described
in the previous section, (iv) a membership component to handle all cryptographic
operations, and (v) a store component to save all state to persistent storage. The
last three components run on a different browser thread by using Web Workers.
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Fig. 2. Browser-based architecture of MobBFT.

(i) Public interface. This component provides an API to application devel-
opers to use this middleware. It provides four functions to modify the appli-
cation state: GET(key) returns the current value of the register at the given
key, SET (key, value) submits a proposal to update the register at the given
key, DELETE (key) deletes the register at the given key. A tombstone is kept for
correct replication, LISTEN (key, callback) supports reactive programming by
calling the callback with the new value each time a new value for the register is
confirmed by the network.

Apart from those functions, the middleware also provides a constructor func-
tion to initialize the middleware by passing the following four configuration pa-
rameters: the list of all members of the network together with their public key,
the private key of the replica, the URL to the signaling server to set up the peer-
to-peer connections, and an access-control callback to verify state changes. This
access control callback is called before voting for a new proposed value, with
both the old and new values as arguments. It should return a boolean whether
to allow this change or not. This callback enables the implementation of basic
access control policies on the values. One example is to embed the public key of
the owner into the value and requiring each new value to be signed by the owner.
This value can only be changed by the owner, and supports passing ownership
by changing the embedded public key.

(i) Peer-to-peer network. The P2P Network component manages the peer-
to-peer network and is responsible for the replication of the state-based CRDTs.
Many browser-based replicas are connected to each other using WebRTC (Web
Real-Time Communications). WebRT'C enables a browser to communicate peer-
to-peer. However, to set up those peer-to-peer connections, WebRTC needs a
signaling server to exchange several control messages. Once the connection is
set up, all communication can happen peer-to-peer, without a central server.
Another WebRTC peer-connection can also be used as a signaling layer, so once
a replica is connected to another one, it can also connect to all of its peers,
without the need of a central signaling server. In our adversary model, this server
is assumed to be trusted. If this signaling server would be malicious, the safety
of the system is not endangered as no actual data is sent to this central server.
However, some peers might not be able to join the network and the required
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supermajority might not be reached, which violates liveness. The use of multiple
independent signaling servers can lower the risk of this happening.

(i4i) Consensus. The Consensus component handles the consensus protocol
described in Section [2] It maintains a Merkle-tree of all registers and uses the
state-based CRDT framework OWebSync [24] to replicate the local state to
other replicas using the P2P Network component. The Merkle-tree is constructed
using the Blake3 cryptographic hash function. For performance reasons, the hash
function is implemented in Rust and compiled to WebAssembly.

(iv) Membership. The Membership component contains all cryptographic ma-
terial and is responsible for all cryptographic operations such as signing and
verification of signatures. We use an aggregate signature scheme called BLS [10].
Section[3]provides more details about the BLS implementation. It is implemented
in C and compiled to WebAssembly.

(v) Store. At last, the Store component saves all state to the IndexedDB
database. IndexedDB is a key-value datastore built inside the browser. Each
register and the Merkle-tree are serialized to bytes and stored there under the
respective key. This enables users to close the browser and continue afterwards
without losing the current state.

Aggregate signatures using BLS. The consensus protocol in Section |2 is
resource-intensive with respect to aggregation and verification of digital signa-
tures. Signatures must be continuously collected and verified. This means, in
every intermediate state of a transaction, each party needs to keep track of all
incoming signatures and verify them to prevent malicious scenarios. Persistence,
management, and transmission of these signatures are costly, especially in a
browser-based setting. Therefore, our protocol requires short and compact signa-
tures to reduce storage and network footprint. Boneh-Lynn—Shacham (BLS) [10]
presented a signature scheme based on bilinear pairing on elliptic curves. The
size of a signature produced by BLS is compact since a signature is an element
of an elliptic curve group. The aggregation algorithm outputs a single aggre-
gate signature as short and compact as the individual signatures, unlike other
approaches that rely on ECDSA, DSA or Schnorr. Other state-of-the-art BF'T
systems such as SBFT [I8] and HotStuff [47] also use aggregate or threshold
signatures. However, they use it in a different way. They let the leader compute
the aggregate signature. MobBFT uses a different approach, once a proposed
quorum certificate has reached a supermajority of the votes, any replica can
aggregate these into one single aggregated BLS signature.

The standard scheme is vulnerable to rogue public key attacks. The state-
of-the-art approach [9] to mitigate such attacks is to compute (ti,...,t,) +
Hi(pk1, ..., pky) for each Agg invocation and compute o + [[}_, oi*, where pk;
is the public key of replica i, H; is a hash function, and o; is a signature produced
by replica i. Although the ¢; values can be cached, the computation of o would
be costly. Moreover, Agg does not take as input the same set of public keys
at different states of a transaction in our consensus protocol. Therefore, we
distribute the computations by moving the calculations of the ¢; and Ufi values
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to the signing parties, and as a result, these computations are performed only
once. Now, any replica can run Agg by only computing o;...0,,. The security
properties of BLS remain intact [9], and we obtain more efficient aggregations
at scale.

4 Evaluation

We validated the MobBFT middleware with a loyalty points use case [23]. The
first section presents this validation. Next, we present three different benchmarks
with different scales. The first benchmark shows the performance results in the
optimistic scenario with no network failure or Byzantine failures. The second
benchmark evaluates the performance in a more realistic scenario with some
network failures. The last benchmark evaluates the performance in the presence
of a Byzantine replica.

Validation in a loyalty points use case. Integrated loyalty programs can
be more effective than traditional loyalty programs that are limited to a single
company. Think about airlines that award miles which can be redeemed with
several partners. Such collaborations usually introduce an extra trusted interme-
diary and add more layers of management and operational logistics. This trusted
party can charge high transaction costs to be part of the integrated network. For
small merchants on a farmer’s market or in a local shopping street, this opera-
tional overhead is too much of a burden. A decentralized peer-to-peer network
can enable fast and secure creation, redemption, and exchange of loyalty points
across different merchants.

The deployment of the loyalty points use case consists of three services: a web
application running in a browser for each merchant, a web server to serve the
static web application files, and a signaling server to set up WebRTC peer-to-peer
connections between the browsers. The web server is optional. Every merchant
can also store those application files themselves and load them from their local
file system. The signaling server is a trusted component. However, if trust is not
present, you can set up multiple signaling servers to reduce potential misbehav-
ior. No actual data is sent to the signaling server. It is only used to discover
other peers on the network. To have a baseline, we compare MobBFT to two
other existing state-of-the-art systems for BFT consensus: BFT-SMaRt [8/45]
and Tendermint [I2]. BET-SMaRt is a more traditional BFT protocol, similar to
PBFT [44], where all replicas are connected to each other, and one leader drives
the protocol. If that leader fails, a new one will have to be elected before any
progress can be made. Tendermint [I2] uses Gossip for communication between
the replicas. There is still a leader, however, that leader changes frequently.

Test setup. To test the performance of the middleware, we implemented the use
case and deployed it on the Azure public cloud. We used 21 VMs (Azure F8s
v2 with 8 vCPUs and 16 GB of RAM) with one VM acting as a central server
running the web server and signaling server. The other VMs are running Chrome
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browsers inside a Docker container. Each of those VMs holds one to five browser
instances for different scales of the benchmarks. To simulate a truly mobile en-
vironment, the network is delayed to an average latency of 60 milliseconds using
the Linux tc tool, which simulates the latency of a 4G network. Every test is
executed 10 times to ensure the results are reliable.

We are interested in the time it takes to confirm a transaction, experienced
by the browser that submitted the transaction. Each transaction is a group of
loyalty points being changed from owner. For example, a merchant gives some
loyalty points to a customer or a customer redeems their loyalty points with
a merchant. In the evaluation, the browser clients will do one transaction per
second. This throughput is more than enough for the local community-scale
use cases we envision. We compare the latency and network bandwidth with a
different number of browsers. We show a boxplot of the latency results instead
of only the average, as all users should experience fast confirmation times, and
not only the average user.

Optimistic scenario. In the optimistic scenario, every replica is honest and
no replicas fail, so the fast path can be used. One single aggregate signature is
verified before each decision, avoiding costly signature verifications after every
message. As every replica is honest, this aggregate signature is correct and the
new value can be accepted by all replicas.

Fig. [3a] shows the latency for the different technologies. For the use case of
loyalty points, transactions must be confirmed fast, as people are waiting at
checkout to receive or redeem loyalty points. MobBFT can confirm transactions
within 4 seconds, even with a network of one hundred browsers. BFT-SMaRt can
confirm transactions within half a second. This is because all replicas communi-
cate directly with each other. However, having all replicas directly connected to
each other is not realistic in a mobile peer-to-peer network. In contrast, Mob-
BFT and Tendermint use Gossip and need multiple hops before all replicas are
reached. This also causes the increased latency. Furthermore, BFT-SMaR#t uses
HMAC to authenticate requests, which are an order of magnitude faster than the
asymmetric signatures used in MobBFT and Tendermint. We can see a similar
pattern in the bandwidth requirements shown in Fig. In the large-scale sce-
nario with 100 browsers, MobBFT uses less than 3 Mbit /s, which is acceptable
for a typical mobile network.

Realistic scenario. The same benchmark is now repeated with 25% of the repli-
cas failing during the benchmark. A failure is simulated by dropping all network
packets to and from that replica. Replicas fail one by one, with a 5-second delay
between each failure. As all systems are Byzantine fault tolerant, they should be
able to tolerate up to 33% of the replicas failing or acting Byzantine.

Fig. [4a] shows the latency in this scenario. MobBFT is not impacted much
by the failing replicas and can still confirm transactions within 5 seconds. The
impact on Tendermint is also small, but the latency is doubled to about 10 sec-
onds. BFT-SMaRt however needs to use a costly leader election protocol when



12 Kristof Jannes, Emad Heydari Beni, Bert Lagaisse, and Wouter Joosen

Latency [s] Bandwidth [Mbit/s]
4 3
2

—
H
NN
-
HEH
-
—

SSNNANNASNANAANY

O T T T T T T 1 0 - = —
20 40 60 80 100 20 40 60 80 100
4+ replicas # replicas
B MobBFT Tendermint B BFT-SMaR¢t
(a) Latency (b) Network usage

Fig. 3. Performance in the optimistic scenario with no failures.
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Fig. 4. Latency in the realistic scenario with network or Byzantine failures.

the current leader fails. This process takes some time, during which no transac-
tion can be committed. Once a leader is chosen, the same fast performance can
be achieved again. This behavior is clearly visible in Fig. [{a] The median latency
of BFT-SMaRt is not affected by the failures. However, the tail latency increases
to 27 seconds for the scenario with 80 replicas. It cannot handle the case with 100
replicas. BFT-SMaR#t is unable to handle large network sizes when the latency
between the nodes is higher than usual, e.g., in geo-distributed systems or on
mobile networks. This has been shown in the literature before [I1]. Tendermint
does have a leader, but it is rotated round-robin all the time. This makes the
failure of a leader less severe, as a new one will quickly be elected anyway.

Byzantine scenario. For MobBFT, we performed an extra benchmark with
Byzantine replicas. As long as the honest replicas are still using the fast path,
the Byzantine replicas will send extra invalid signatures. As the signatures are
only verified when a supermajority is reached, the honest replicas only realize
this at the end, and they cannot find out which replicas are Byzantine. Once
the fast path is disabled, the signatures are verified for every message, so mali-
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cious replicas can be detected and excluded from the network. In this case, the
Byzantine replicas keep the signature intact to avoid being detected. However,
they will try to slow down the consensus by not voting themselves.

The latency in this Byzantine scenario is shown in Fig. db] MobBFT can
handle Byzantine replicas very well for smaller networks, however, for networks
of size 100 replicas, the tail latency becomes 7 seconds. Which might already
be quite high for the use case of loyalty points. We did not test the effect of
Byzantine replicas for BFT-SMaRt or Tendermint. As they do not use a fast
path when everyone is honest, the impact is less. However, if the current elected
leader happens to be Byzantine, it can delay the consensus until some timers
end and a new leader is elected [2].

Discussion and conclusions. We have shown that MobBFT can be used for
the loyalty points use case with up to 100 different merchants, even when some
of them are acting maliciously. MobBFT can achieve similar latencies as other
Gossip-based BFT protocols, such as Tendermint. Our evaluation also shows the
trade-offs that MobBFT makes. In an optimal scenario where there is a good
connection available between all replicas and no network disruptions or crashes
happen, then a classical leader-based protocol such as BFT-SMaRt will out-
perform MobBFT. However, as we mention in the introduction, we envision a
more ad-hoc network between low-end devices on a residential or even a mobile
network, where short-term disruptions are common. Our evaluation shows that
MobBFT is very robust against this kind of setting and achieves similar perfor-
mance as in the optimal scenario. A leader-based protocol such as BFT-SMaR#t
is not well suited. The temporary failure of a leader leads to long commit times,
and even total failure for larger network sizes. This leader also needs more re-
sources and a direct connection to every other replica. Keeping 100 WebRTC
connections open in a browser, while theoretically possible, drastically reduces
performance. However, MobBFT does not impose this, since consensus can be
reached gradually over time, as the full state of the proposals and votes propa-
gates through the network. MobBFT can confirm transactions fast, in the order
of seconds, without needing a complex back-end setup or wasting a lot of energy.
MobBFT has a small storage footprint due to its state-based nature.

5 Related work

Several client-side frameworks for data synchronization between web applica-
tions exist: Legion [33], Automerge [27], and OWebSync [24]. They make use
of various kinds of Conflict-free Replicated Data Types (CRDTS) [43] to deal
with concurrent conflicting operations, and can synchronize data peer-to-peer.
They are easy to set up and only require a browser and a peer-to-peer discovery
service. However, they assume trusted operation as the default setting. Some
work has been done in a semi-trusted setting [3413]. None of them can tolerate
Byzantine parties.
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WebBFT [7] shares a similar vision of client-centric, decentralized web appli-
cations. However, they only interface to a backend BFT-SMaR#t cluster, instead
of running the BFT protocol directly between browsers.

Open or permissionless blockchains such as Bitcoin [40] and Ethereum al-
low everyone to participate and use Proof-of-Work (PoW) to reach agreement
over the ledger. However, PoW has several flaws [6]. PoW uses a lot of pro-
cessing power and energy and performs poorly in terms of latency. It assumes
a synchronous network to guarantee safety. When this assumption is violated,
temporary forks can happen in the blockchain as liveness is chosen over safety.
Therefore, PoW blockchains do not offer consensus finality, instead one needs to
wait for several consecutive blocks to be probabilistically certain that a trans-
action cannot be reverted. Simplified Payment Verification (SPV) mode [40] for
clients can reduce the resource usage at the cost of decentralization.

ByzCoin [29] uses PoW for a separate identity chain to guard against Sybil
attacks but uses a BF'T protocol to order transactions. ByzCoin makes use of
collective signatures (CoSi) and a balanced tree for the communication flow.
CoSi makes use of aggregate signatures by constructing a Schnorr multisignature.
However, CoSi needs multiple communication round-trips to generate the multi-
signature and assumes a synchronous network.

Tendermint [I2], used in Cosmos, uses Proof-of-Stake (PoS), where voting
power is based on the amount of cryptocurrency owned by each replica. Because
block times are short, in the order of seconds, there is a limited number of
validators Tendermint can have because finality needs to be reached for each
block. It is also not resistant to cartel forming, which allows those with a lot of
cryptocurrencies to work together to control the network.

Other protocols use a randomized approach. Ouroboros [26], HoneyBad-
ger [39], Dumbo [I9] and BEAT [14] use distributed coin flipping for consensus.
HoneyBadger [39] uses threshold encryption [44] for censorship resilience. Algo-
rand [I7] uses Verifiable Random Functions [38] to select a random committee
for the next round. Avalanche [42] uses meta-stability to reach consensus by
sampling other replicas without any leader. While Avalanche is lightweight and
scalable, it needs to be able to sample all other validators directly. The number
of connections one can open in a browser without performance loss is limited.
MobBFT supports propagation of votes over multiple hops.

Permissioned blockchains such as Hyperledger Fabric [1] have closed member-
ship and often use a BFT consensus protocol to order transactions. For example
BFT-SMART in HyperLedger Fabric [8I45]. The first known BFT protocol is
Practical Byzantine Fault Tolerance (PBFT) [13]. Other protocols bring im-
provements to the original PBFT protocol. Zyzzyva [30] uses speculative execu-
tion which improves latency and throughput if there are no Byzantine replicas.
However, its performance drops significantly if this premise does not hold. These
protocols are targeting a small number of replicas in a local network. They gener-
ally work in two phases: the first guarantees proposal uniqueness, and the second
guarantees that a new leader can convince replicas to vote for a safe proposal.
HotStuff [47] proposed a three-phase protocol to reduce complexity and simplify
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leader replacement. This makes HotStuff more scalable. All these algorithms use
a leader to drive the protocol. When the leader is malicious, the performance
can degrade quickly [2]. GeoBFT [20] is a topology-aware, decentralized con-
sensus protocol, designed for geo-distributed scalability. MobBFT does not use
a leader and replicas communicate only to a subset of the other replicas using
a gossip-like protocol. Another approach is to use a trusted hardware compo-
nent [46l25l4]. These are faster and less computationally intensive but require
specialized hardware to be present. Moreover, trusted execution environments
have been broken in the past [28§].

There are several proposals to improve the performance and response time of
Hyperledger Fabric. StreamChain [21] reaches consensus over a stream of trans-
actions instead of blocks. FabricCRDT [41I] uses CRDTs to support concurrent
transactions to occur in the same block, using the built-in conflict resolution
of CRDTs to resolve the conflict automatically. Other approaches also borrow
from CRDTs: PnyxDB [I1] supports commuting transactions to be applied out-
of-order. A novel design for gossip in Fabric [5] improves the block propagation
latency and bandwidth. While these improvements make Hyperledger Fabric
faster, none of them try to reduce the infrastructure requirements to be able to
easily set up an untrusted peer-to-peer network.

The Lightning Network or state channels for Bitcoin [32] or Ethereum are
off-chain protocols that run on top of a blockchain. A new state channel be-
tween known participants is created by interacting with the blockchain. After its
creation, participants can use this channel to execute state transitions by collec-
tively signing the new state. These transactions do not involve the blockchain
and have fast confirmation times and no transaction costs. However, state chan-
nels assume all participants to be always online and honest. If this is violated,
the underlying blockchain needs to be used to resolve the conflict, or a trusted
third party can be used [36]. MobBFT uses a similar state-transitioning proto-
col where only the latest collectively agreed state needs to be stored. However,
MobBFT can tolerate both failing and malicious replicas, without resorting to
a blockchain or a trusted third party.

6 Conclusion

In this paper, we presented MobBFT. A browser-based middleware for decentral-
ized, community-driven web applications. MobBFT uses an client-centric, lead-
erless BFT consensus protocol, combined with a robust and efficient state-based
synchronization protocol. MobBFT uses an optimized BLS scheme for efficient
computation and storage of signatures. It supports a client-centric, browser-
based, state-based, permissioned datastore with a low infrastructure and stor-
age footprint for small-scale, citizen-driven networks. MobBFT offers consistent
and robust confirmation times to achieve finality of transactions in the order
of seconds, even in failure settings and Byzantine environments. In contrast to
traditional blockchains, MobBFT does not store a transaction log or blockchain,
keeping the overall storage footprint small.
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