
Secure Replication for Client-centric Data Stores
Anonymous Author(s)

Abstract
Decentralized, peer-to-peer systems using Conflict-free Repli-
cated Data Types (CRDTs) can offer a more privacy-friendly
alternative to centralized solutions that are often used by Big
Tech. However, traditional CRDTs assume that all replicas
are trusted, which is not necessarily the case in a peer-to-peer
system. This paper presents a protocol for secure state-based
CRDTs which provide fine-grained confidentiality and in-
tegrity by using encryption per field in every (sub)-document.
Our protocol guarantees Strong Eventual Consistency de-
spite any Byzantine replicas. It provides a fine-grained, dy-
namic membership and key management system, without
violating Strong Eventual Consistency or losing concurrent
updates. Our evaluation shows that the protocol is suitable
for use in interactive, collaborative applications.

1 Introduction
In the last decade, personal data has been stored in the cloud,
rather than on a local computer. From many perspectives,
this is beneficial for end-users. Data is accessible everywhere
and collaboration with anyone in the world is made easy.
Users also do not need to worry about data loss due to mal-
function, or security breaches. However, the reality today
often does not match this ideal. Few large tech companies
and governments have access to vast amounts of data. They
can potentially misuse it and invade the privacy of their
customers or citizens to gain more money or harm politi-
cal dissidents. Moving to another vendor is often very hard,
if not impossible. The data is also not secure, as we hear
about new security breaches almost every month, and most
breaches probably even go undetected.

One solution is to move to a more decentralized and client-
centric approach [2, 5]. The primary copy of the data is stored
under the control of the user on their local device. Data can
then be replicated peer-to-peer to all other user devices and
collaborators. However, a true peer-to-peer approach of end-
user devices is not very durable and available. Devices are
often not online at the same time, do not have a large amount
of storage space, and can fail more easily or more frequently
compared to a server inside a data center.
Having some kind of centralized server can be beneficial

to aid the client-centric vision. The server is most of the time
online, and all clients can use this server to replicate their
data to each other. Even when they are never online simul-
taneously. Ideally, this server does not belong to a big-tech
company but is under the control of the end user. One such
approach is the Solid Platform [8]. With Solid, every person
manages their own Personal Online Datastore (pod), either
self-hosted or hosted with a third party pod-provider. Each

application will store all user data inside the user’s pod, and
the user is in control to decide who has access to it. This also
makes it easy to switch to a different application. However,
the majority of the users will not choose to host their pod
themselves. Instead, they will rely on a third-party company
or the government to provide them with a pod. This might
lead to an even bigger problem of surveillance capitalism,
where few companies provide pods to their customers and
gain immediately access to even more data. These providers
with all data of a large number of users will also be an inter-
esting target for hackers.

The solution we propose is a hybrid approach of a peer-to-
peer network of mostly client devices and some centralized
servers to improve availability and durability. An example is
shown in Figure 1. While we trust the centralized server to
keep data available, we do not want them to read or modify
the actual data. A similar durability can be reached by creat-
ing a larger peer-to-peer network with friends or family, and
replicating all data between all these devices. However, it
should be avoided that peers are able to look into all personal
data of other peers. A secure replication protocol without
having access to the plain data is required.
In such systems, eventual consistency is the most prag-

matic and only viable option. As devices are often offline,
reaching a global consensus to have strong consistencywould
be nearly impossible or beyond a user-friendly time window.
With strong consistency, making updates on an offline device
would be impossible, and latency will be bad as clients are
often only connected via WiFi or a mobile network. By opt-
ing for eventual consistency, we need a way to make sure all
replicas converge to the same state after they have received
all operations. One option is to use Conflict-free Replicated
Data Types (CRDTs) [11]. CRDTs are data structures that
guarantee eventual consistency without explicit coordina-
tion. However, classical CRDTs do not encrypt their data

Figure 1. Hybrid architecture of a peer-to-peer network
with a centralized server. Some users have one device, while
others have multiple. Some devices have access to the server,
others connect peer-to-peer. Some devices can be malicious.

1

Anon.

and are not resilient against an attacker trying to prevent
convergence.
In this paper, we present a secure state-based CRDT pro-

tocol that extends classical state-based CRDTs with:

• Fine-grained encryption per field in every (sub)-docu-
ment, to preserve confidentiality and integrity of all
user data,
• Byzantine Fault Tolerance, to guarantee Strong Even-
tual Consistency even with Byzantine parties,
• Dynamic membership and fine-grained key manage-

ment, without breaking Strong Eventual Consistency,
leaking extra data, or losing updates.

Compared to other state-of-the-art approaches for secure
CRDTs [1, 4], we provide the first framework to allow both
concurrent data updates, as well as concurrent updates to
the access control policy. This means that a user can share a
document, or revoke access to a document, without losing
concurrent updates to that document.

Being able to change the encryption key to give or revoke
access, or to rotate the encryption key when it might be
compromised is especially important for collaborative ap-
plications. For a single user, that user can easily coordinate
a key rotation by bringing all his devices together, halting
the system, and updating the key. However, for collaborative
applications with several users, this process should be done
online, without halting the system or explicit coordination
between all collaborators. The protocol presented in this
paper supports this.
This paper is structured as follows. Section 2 describes

the system- and adversary-model. We explain our protocol
for secure CRDTs in Section 3. We evaluate our protocol in
Section 4. Section 5 presents related work. We conclude in
Section 6.

2 System model
In this paper, we consider a peer-to-peer network of replicas
connected by an asynchronous network (Figure 1). Replicas
do not have a direct connection to every other replica, and
they do not necessarily know the full set of replicas. Mes-
sages can be delayed, dropped, or delivered out of order, but
eventually, some messages will be received. Honest repli-
cas will follow the protocol exactly, Byzantine replicas can
behave arbitrarily. There is no limit on the number of Byzan-
tine replicas. Every user has an asymmetric key-pair, and
other users are able to retrieve the public key of other users
in a secure way, outside our protocol. We assume attackers
are computationally bounded and it is infeasible to reverse
the used symmetric encryption without the secret, forge the
used asymmetric signatures or find collisions for the used
cryptographic hash functions.
Given this system model, our protocol provides the fol-

lowing properties in the face of an active adversary:

• Confidentiality: Only users who have been given
access can read the content.
• Integrity: Only users who have been given access
can edit the content.
• Attributability: Each edit is attributable to the user
who made the modification.
• Availability: As long as at least two honest replicas
are available, they can work together and replicate
correctly between each other.
• Eventual delivery: An update delivered at some cor-

rect replica is eventually delivered to all correct repli-
cas.
• Strong convergence: Correct replicas that have de-
livered the same updates have equivalent state.
• Termination: All method executions terminate.

The last three properties together deliver Strong Eventual
Consistency [11]. All the properties are kept intact, even
when the adversary has been given access to the actual con-
tent. The adversary is then able to arbitrarily change the
content, in a way that might not make sense for the applica-
tion or end-user. However, all replicas will still converge to
the same end-state, and the bad updates will be attributable
to the Byzantine user. The other users can then decide to
revoke access if necessary.

3 Secure CRDTs
This section explains the protocol for our secure CRDTs.
We use the term key to refer to a key from a key-value pair.
When we are referring to cryptographic keys, we will always
specify this as a secret key (𝑘) for symmetric encryption
and as a private key (𝑠𝑘) or public key (𝑝𝑘) for asymmetric
encryption or signatures.

3.1 Encrypted CRDT
We now present two encrypted CRDT protocols. These two
data structures are enough to encode a JSON tree with only
maps and values into a CRDT. Arrays are not yet supported.
Figure 2a shows an example of a JSON document and Fig-
ure 2b shows how it will be represented internally by the
protocol explained in this section.
State-based CRDTs have a merge-function, which takes

as input two states of the same CRDT and produces a new
state. Mathematically, these states form a join semi-lattice,
and the resulting state of the merge function is the smallest
state that is larger or equal to the two input states according
to the partial order of the lattice. To replicate this data struc-
ture, a replica needs to send its state to another replica. This
receiving replica can use the merge function with its local
state and the received state to end up with the merged state.
Each CRDT is associated with an asymmetric key-pair.

The public key is included in the CRDT and also functions
as unique ID to reference the CRDT. The private key is only
shared with users who have read-write access to the data.

2

Secure Replication for Client-centric Data Stores

{
"name": "John Doe"

}

(a) JSON data

ORMap:
id: 𝑝𝑘1 (0x12)
observed:
- key: 𝐸𝑛𝑐𝑘1 ("name")

timestamp: 𝑡1
𝜎𝑠𝑘1, 𝑝𝑘𝑎, 𝜎𝑎

removed: ∅
𝜎𝑠𝑘′1

, 𝑝𝑘𝑎, 𝜎𝑎

LWWRegister:
id: 𝑝𝑘2 (0x1a)
value: 𝐸𝑛𝑐𝑘2 ("John Doe")
timestamp: 𝑡2
𝜎𝑠𝑘2, 𝑝𝑘𝑎, 𝜎𝑎

(b) CRDTs

𝐻𝑟𝑜𝑜𝑡

1: 𝐻12

2: 𝐻1 a: 𝐻2

(c) Trie

𝑠𝑘1 ← RND()
𝑝𝑘1 ← 𝑠𝑘1 ×𝐺
𝑘1 ← H(𝑠𝑘1)
𝑠𝑘2 ← HKDF𝑠𝑘1 ("name", 𝑡1)
𝑝𝑘2 ← 𝑠𝑘2 ×𝐺
𝑘2 ← H(𝑠𝑘2)

(d) Key derivations

Figure 2. Example of how a JSON data structure can be translated into a secure CRDT data structure, consisting of two CRDTs.
These CRDTs are put inside the Modified Merkle-Patricia Trie. At the right, we show how keys can be derived starting from
one root key: 𝑠𝑘1.

LWWRegister. A LWWRegister [11] is a data structure
that holds one single value. When updating the value, the
new value is associated with the current timestamp. Con-
flicts are resolved by selecting the value associated with the
highest timestamp. If the timestamps are equal, the value
with the lexicographically largest hash value will be selected.
Since the actual value is not used to perform a merge, the
value can be encrypted using any symmetric encryption
protocol, and the resulting data structure is still a CRDT.

ORMap. An ORMap [11] is a data structure that holds
a mapping of keys to values. In practice, it consists of two
sets: the observed-set and the removed-set. When a new
key-value pair is added to the ORMap, it is associated with a
unique ID and added to the observed-set. When removing
the key-value pair, it is added to the removed set. The key-
value pairs included in the ORMap are all pairs included in
the observed-set, which are not present in the removed-set.
Thanks to the unique ID, it is possible to remove an item
and add it again later. In our protocol, the values are ref-
erences to other CRDTs: either a LWWRegister or another
ORMap. The keys, however, need to be encrypted to main-
tain confidentiality. The unique ID also has to be protected
against Byzantine replicas [4]. If the replica itself is responsi-
ble for generating a new random ID, a Byzantine replica can
easily generate duplicate IDs. Therefore, we will generate
IDs deterministically based on the update. The ID of a new
key-value pair is derived from the secret key linked to the
ORMap and the key from the key-value pair. Since it must be
possible to remove and add a key-value pair again, we also
add a timestamp to each key-value pair. This timestamp is
also used as input to derive the ID. There is no need to store
this ID, every replica that has access to the secret key can
compute the ID itself. Since the IDs and keys are therefore
only available to replicas that have access to the secret key,
replicas without access do not know when two items have
the same ID or key, and they will therefore not be able to
propagate the merge to the child CRDTs. Instead, two copies
of these similar key-value pairs will be stored in the ORMap,
and any other replica which does have access to the secret
key can perform the merge later. This derived ID is also

the value of the key-value pair: i.e., it is the ID of the child
CRDT. Since this ID is only available to replicas with access
to the secret key, the structure of the data is also hidden from
replicas that do not have access. This means that a replica
that has no access at all, will only be able to see how many
individual ORMaps and LWWRegisters there are, without
knowing how they belong together.

Signatures. Only users who have been given access to
the secret key should be able to modify data. For this reason,
every update has to be signed by the private key of the CRDT.
For a LWWRegister one signature is sufficient. An ORMap
will have one signature per key-value pair in the observed-
and removed-set. Since the public key is also included in
the CRDT, anyone can verify that an update came from a
party with access to the private key. These signatures also
ensure it is safe to use a public key as ID for the CRDT in a
context with Byzantine actors. You cannot reuse the same ID
if you do not have access, and if you do have access, using
the same ID will lead to a merge of those two CRDTs. This
is equivalent to a write to the first CRDT, which you are
allowed to do as you do have access to the private key.
Each update is also signed by the private key of the user

who makes the update. This way, each update is attributable
to the user who made the edit. The first signature (𝜎𝑠𝑘 in
Figure 2b) with the private key of the CRDT proves that
you have the right to modify it, the second signature (𝜎𝑎 in
Figure 2b) with your own private key proves who you are. If
attributability is not required, it is possible to leave out the
second signature with no other changes to the protocol.

3.2 Modified Merkle Patricia Trie
All individual CRDTs are stored inside a Modified Merkle
Patricia Trie [13] (Figure 2c). A Patricia Trie is a tree-shaped
data structure in which items associated with a key with a
common prefix, will share the same path in the tree for that
prefix. A Merkle-tree [9] is a tree-shaped data structure of
hashes, in which the hash of a parent node is based on the
hash of the hashes of the child nodes. This way, large data
structures can quickly be compared or verified based on the
hash in the root node of the tree. A Modified Merkle Patricia

3

Anon.

Trie combines both a Patricia Tree and a Merkle-tree. Each
node in the trie also carries a hash value. This data structure
is also used by Ethereum to store the state of the Ethereum
blockchain [13].
The key to insert a CRDT into the trie is the ID of the

CRDT. Since the ID is also a public key, they are random
and therefore the trie will be relatively well-balanced. By
using the Merkle-tree, two replicas can efficiently exchange
updates between each other. The replicas can compare the
root hash of the trie. If the hashes match, the two tries are
exactly the same, and no replication is required. If the hashes
do not match, the replicas will descend in the tree and send
the hashes of the next level in the tree. This process continues
until it reaches the leaves of the tree. At this time, the updated
CRDTs can be sent and merged. This process is similar to
the replication process in OWebSync [3].

3.3 Key derivation and rotation
In the previous two sub-sections, we created a trie of indi-
vidual CRDTs which contain signatures and are partially
encrypted by the respective private and secret key of the
CRDT. The secret key can be derived from the private key by
using a key derivation function, for example HKDF [7]. This
leads to one encryption key to manage per CRDT. However,
as already indicated in the paragraph on ORMaps, the key
material for children is derived from the parent key. Instead
of directly deriving the ID for a key-value pair in an ORMap,
we derive a private key. We can then use this private key to
derive the secret key and public key. This public key is also
the ID. A user who has access to the full document tree only
needs access to the private key of the root and can derive
all other keys from this single key. This makes sharing a
document and key management easy. An example of this
derivation process is shown in Figure 2d.
When access is revoked from a user, the encryption key

will have to be updated. Otherwise, that user still has access
to the secret key, and would still be able to read and write. A
new private key is derived from the parent private key, the
key (from the path in the tree), and the current timestamp.
Because the timestamp will be different, a brand new private
key is generated and the CRDT can be re-encrypted with the
corresponding secret key. Since the private key is changed,
the public key will also be different and the CRDT will be
stored under a different ID in the trie.
Because these CRDTs end up in different places of the

trie, they can co-exist for while. This means that replicas
that are not yet informed about the key rotation can still
perform updates on the old version, while other replicas
can do updates on the new version. Any replica that has
access to both the old and the new version knows those two
CRDTs are in fact the same CRDT and can perform a merge
operation as usual. Replicas that do not have access to both
private keys are unaware they belong to the same CRDT and
will threat them as two separate CRDT structures.

3.4 Global time
Common wisdom in the field of distributed systems is that
you cannot have a global time in a distributed system. While
this is true, a course-grained global timestamp is still possible.
The Ethereum blockchain, for example, includes a timestamp
in every block header. In the Geth implementation, a times-
tamp of a new block has to be larger than the timestamp of
the previous block and less than 15 seconds in the future of
the current time of a replica. Similar timestamps and rules
are present in other blockchains.
We use similar rules for the timestamps used in our pro-

tocol. A timestamp may only be at most one minute in the
future, otherwise, the replica will not accept it and stop com-
munication with the other replica. It is the task of the replicas
to keep their clocks correct. These days, internet-connected
devices automatically synchronize their time with an inter-
net time server and are generally correct within one minute.

A Byzantine replica can re-use a timestamp without prob-
lem since the lexicographic order of the hash value will then
be used as a tie-breaker. Such a replica can also get an edge
over other replicas by always using a timestamp one minute
in the future. Because its timestamps are generally larger,
when an update is done simultaneously, its update is more
likely to win in the last-writer-wins conflict resolution. This
is however only possible for Byzantine replicas that have
access to the private key, i.e., replicas with write access. Repli-
cas without access can never change anything. Hence, such
replicas do not get to choose a timestamp. This edge that a
Byzantine replica has is only present for short intervals. On
larger intervals, the correct user intention will be kept. For
example, when user A makes a change in the morning, and
another user B changes the same data in the afternoon, the
change of user B will be chosen. User A can of course keep
increasing the timestamp of his update, but this is equivalent
to a new write by a replica that has write access, so this is
allowed.

3.5 Discussion
This section presented a novel protocol for secure and confi-
dential CRDTs. Since replication is state-based, there are no
client-specific identifiers kept for the replication. Replicas do
not need to know every other replica. Only the replica modi-
fying the access control policy has to know the public key of
all users with read and write access. This makes the protocol
extremely robust against network failures and long-term
disconnects [3]. Centralized servers which are only there
to improve the availability and durability of the replication
between clients, do not need any private key material to
function.

The current protocol will keep both old and new versions
of a CRDT after a key rotation forever. This is not required,
once the new version is created, the old one can be removed.
With concurrent edits, it is possible that the old version will

4

Secure Replication for Client-centric Data Stores

resurface again, but after each merge with the new version,
it is removed again. After some time, all replicas will know
about the key rotation and all updates will be applied to
the new version and the old version will never resurface. If
the replica that has been revoked access by the key rotation
makes an update, it will not be merged in the new version,
but simply be discarded. This is possible due to the course-
grained timestamps. So, there is a small interval of less than
a minute in which its updates will still be accepted. For most
application cases that already opted for eventual consistency,
this is acceptable.
To be able to determine whether an update from an old

version of the CRDT should be merged with the new version,
a list of all users having access to it is required. This is a
list of public keys, and only needs to be kept at the point
in the JSON tree where you give access to other users. This
can be encrypted as well, as only replicas with access to the
actual data will have to use the list to potentially merge data
updates across key updates. Replicas that decide to rotate
a key can also use this list to determine who should have
access to the new key. Replicas with no access to the data
do not use this list and instead rely on the key-pair of each
CRDT to determine whether access was correctly granted.

The only cryptographic protocols used are plain symmet-
ric encryption (e.g. AES), public-key cryptography (e.g. RSA
or ECDSA), and hashing (e.g. SHA256). Furthermore, we use
a key derivation algorithm based on these protocols (HKDF).
As these are older, well-tested protocols, we can be more
certain of their correctness and safety. There are also more
well-tested and maintained libraries available, making it pos-
sible to implement our protocol in multiple languages. Also,
the availability of hardware support for some of these will
be good for the performance on client devices.

4 Evaluation
We implemented the protocol in a JavaScript-based web ap-
plication, without browser plugins. For our experiments, we
launched up to 30 virtual machines in the Azure public cloud
(F2s_v2 with 2 vCPU and 4 GB RAM) in the same data cen-
ter. To emulate geographically distributed users, we use the
Linux tc tool to increase the network latency between each
VM to an average of 100 ms with 50 ms jitter. Each VM con-
tains one Chromium browser. Every client makes one write
every second. We are interested in the interactive latency,
i.e., after one client makes an update, how long does it take
for other clients to receive it. To compare the overhead of
our encrypted and Byzantine fault-tolerant approach to a
regular approach without security, we also performed the
same experiments with the open-source version of OWeb-
Sync. OWebSync [3] is a state-based CRDT framework, in
which all clients are trusted.

The performance results are shown in Table 1.We compare
the protocol from this paper (secure CRDTs) with OWebSync

Table 1. Performance characteristics of the proposed proto-
col, compared to a baseline protocol without any security.

replicas 10 20 30

Latency [s] secure CRDTs 0.62 0.76 1.59
baseline 0.56 0.50 0.54

Storage overhead secure CRDTs ×16 ×16 ×19
baseline ×4 ×4 ×4

Bandwidth [kbps] secure CRDTs 229 806 830
baseline 231 1382 4160

CPU usage [%] secure CRDTs 19 56 72
baseline 13 42 83

(baseline) for three different numbers of active replicas. With
30 different replicas, each making one request per second,
the average latency is 1.6 seconds before an update is visible
to other replicas. With smaller network sizes, the latency
is lower. OWebSync has a much lower latency, of 0.5 sec-
onds, even for the larger network sizes as no cryptographic
operations are required there. Overall, the latency is low
enough to be considered interactive when multiple users are
collaboratively working on the same document. The stor-
age overhead of the protocol ranges from 16 to 19 times,
compared to the size of the raw data. For OWebSync this
overhead is only 4 times. The overhead comes from the extra
metadata required for state-based CRDTs, but also from the
signatures and encrypted data. This leads to a bandwidth
usage of 830 kbps for 30 replicas, which is readily available
on any mobile network. Interestingly, the network usage for
our baseline, OWebSync is a factor 5 higher, even though
the actual storage size is much lower. The explanation for
this is two-fold. First, OWebSync uses a Merkle-tree which is
based on the actual tree structure of the data, while our pro-
tocol uses a much better balanced Merkle-Patricia Trie. This
allows replicas to propagate updates more fine-grained, i.e.,
when only a leaf in the JSON data changes, we do not need
to replicate the intermediate nodes of the JSON tree. Second,
as the latency of OWebSync is much better, it does more
traversals of the Merkle-tree, while our protocol does less
as more updates can be batched in the same tree traversal
given the higher latency. This second point also explains the
discrepancy in CPU usage for the network with 30 replicas,
as we would expect that our protocol always has a higher
CPU usage compared to a solution without any signatures
and cryptography.

To conclude, we have shown that our protocol for secure
CRDTs, which tolerates Byzantine replicas, and which sup-
ports very fine-grained access control by encrypting every
field in every (sub)-document with a different key, can be
used for interactive, collaborative document editing. The
price to pay is a significant increase in the size of the data
(up to 19 times).

5

Anon.

5 Related work
This section covers related work that also tries to reach
eventual consistency in an adversarial context.
Snapdoc [6] is a collaborative peer-to-peer text editing

protocol. New replicas can be added to the network by only
sending a snapshot of the data, including a cryptographic
proof of the integrity. They can keep the edit history pri-
vate for new replicas, but new replicas can still attribute all
changes, as well as verify the integrity. This is made possible
by using RSA accumulators and Merkle-proofs. However,
the new replica can only accept operations that are created
after the snapshot. When an operation, not included in the
snapshot, was created before or concurrent to a snapshot,
the new replica will have to request a new snapshot and do
the verification process again.

In [12], van der Linde et al. present a system that protects
against rational misbehaving clients in causal consistency.
However, servers are considered trusted, and the focus is on
detecting the Byzantine client, rather than avoiding diver-
gence at all.
In [1], Barbosa et al. extend standard CRDTs with cryp-

tographic protocols. The paper focuses on a client-server
context, where servers are unable to see the actual data. The
same approach can most likely also be used in a peer-to-peer
setting. However, the provided algorithms only work as long
as the same cryptographic key is used. Switching to a new
key will require coordination between the replicas. Further-
more, the approach focuses on confidentiality and does not
tolerate an active Byzantine replica.
In [4], Kleppmann shows how operation-based CRDTs

can be adapted to tolerate Byzantine replicas. The paper
lists four techniques that are together sufficient to make
most operation-based CRDT tolerate Byzantine replicas. The
techniques are: constructing a hash-graph of all updates,
with links to predecessor; ensuring eventual delivery, which
could be done by using the hash graph; constructing unique
IDs, which cannot be controlled by an attacker; and ensuring
that replicas only look at the predecessors of an update to
check the validity of it. However, the paper only focuses on
maintaining eventual consistency, and not on confidentiality.

6 Conclusion and future work
In this paper, we presented a protocol for secure state-based
CRDTs. We have shown that Strong Eventual Consistency
can be reached even in settings with Byzantine replicas. We
have also shown that a key rotation does not have to break
Strong Eventual Consistency and that you can do this con-
currently, while other users are still making updates with the
old keys. The key idea to support this is to store all CRDTs
inside a Merkle-Patricia Trie, and only allow replicas that
have access to both the old and the new secret key to merge
two different versions of the same CRDT.

In future work, we will extend this protocol with online
pruning to remove old versions which are not necessary any-
more from the trie. Arrays are also not yet supported. The
current protocol uses basic, state-of-practice cryptography.
More research is required to evaluate whether newer cryp-
tography protocols such as attribute-based encryption [10]
can offer any benefits.

References
[1] Manuel Barbosa, Bernardo Ferreira, João Marques, Bernardo Portela,

and Nuno Preguiça. 2021. Secure Conflict-Free Replicated Data Types.
In International Conference on Distributed Computing and Networking
2021 (ICDCN ’21). ACM, USA, 6–15. https://doi.org/10.1145/3427796.
3427831

[2] Kristof Jannes, Bert Lagaisse, and Wouter Joosen. 2019. The Web
Browser as Distributed Application Server: Towards Decentralized
Web Applications in the Edge. In Proceedings of the 2nd International
Workshop on Edge Systems, Analytics and Networking (EdgeSys ’19).
ACM, USA, 7–11. https://doi.org/10.1145/3301418.3313938

[3] Kristof Jannes, Bert Lagaisse, and Wouter Joosen. 2021. OWebSync:
Seamless Synchronization of Distributed Web Clients. IEEE Trans-
actions on Parallel & Distributed Systems 32, 9 (2021), 2338–2351.
https://doi.org/10.1109/TPDS.2021.3066276

[4] Martin Kleppmann. 2022. Making CRDTs Byzantine Fault Tolerant. In
Proceedings of the 9thWorkshop on Principles and Practice of Consistency
for Distributed Data (PaPoC ’22). ACM, USA, 8–15. https://doi.org/10.
1145/3517209.3524042

[5] Martin Kleppmann, Adam Wiggins, Peter van Hardenberg, and Mark
McGranaghan. 2019. Local-First Software: You Own Your Data, in
Spite of the Cloud. In Proceedings of the 2019 ACM SIGPLAN Inter-
national Symposium on New Ideas, New Paradigms, and Reflections
on Programming and Software (Onward! 2019). ACM, USA, 154–178.
https://doi.org/10.1145/3359591.3359737

[6] Stephan A. Kollmann, Martin Kleppmann, and Alastair R. Beresford.
2019. Snapdoc: Authenticated snapshots with history privacy in peer-
to-peer collaborative editing. Proceedings on Privacy Enhancing Tech-
nologies 2019, 3 (2019), 210–232. https://doi.org/10.2478/popets-2019-
0044

[7] Hugo Krawczyk and Pasi Eronen. 2010. HMAC-based Extract-and-
Expand Key Derivation Function (HKDF). RFC 5869. https://doi.org/
10.17487/RFC5869

[8] Essam Mansour, Andrei Vlad Sambra, Sandro Hawke, Maged Zereba,
Sarven Capadisli, Abdurrahman Ghanem, Ashraf Aboulnaga, and Tim
Berners-Lee. 2016. A Demonstration of the Solid Platform for Social
Web Applications. In Proceedings of the 25th International Conference
Companion on World Wide Web (WWW ’16 Companion). WWW, CHE,
223–226. https://doi.org/10.1145/2872518.2890529

[9] Ralf Merkle. 1988. A Digital Signature Based on a Conventional En-
cryption Function. In Advances in Cryptology (CRYPTO ’87). Springer,
Berlin, Heidelberg, 369–378. https://doi.org/10.1007/3-540-48184-2_32

[10] Amit Sahai and Brent Waters. 2005. Fuzzy Identity-Based Encryp-
tion. In Advances in Cryptology – EUROCRYPT 2005. Springer, Berlin,
Heidelberg, 457–473. https://doi.org/10.1007/11426639_27

[11] Marc Shapiro, Nuno Perguiça, Carlos Baquero, and Marek Zawirski.
2011. Conflict-Free Replicated Data Types. In SSS 2011 - 13th Inter-
national Symposium Stabilization, Safety, and Security of Distributed
Systems. Springer, Berlin, Heidelberg, 386–400. https://doi.org/10.
1007/978-3-642-24550-3_29

[12] Albert van der Linde, João Leitão, and Nuno Preguiça. 2020. Practical
Client-Side Replication: Weak Consistency Semantics for Insecure
Settings. Proc. VLDB Endow. 13, 12 (2020), 2590–2605. https://doi.org/
10.14778/3407790.3407847

[13] Gavin Wood. 2014. Ethereum: a secure decentralized generalized trans-
action ledger. Yellow paper. ethereum.org.6

https://doi.org/10.1145/3427796.3427831
https://doi.org/10.1145/3427796.3427831
https://doi.org/10.1145/3301418.3313938
https://doi.org/10.1109/TPDS.2021.3066276
https://doi.org/10.1145/3517209.3524042
https://doi.org/10.1145/3517209.3524042
https://doi.org/10.1145/3359591.3359737
https://doi.org/10.2478/popets-2019-0044
https://doi.org/10.2478/popets-2019-0044
https://doi.org/10.17487/RFC5869
https://doi.org/10.17487/RFC5869
https://doi.org/10.1145/2872518.2890529
https://doi.org/10.1007/3-540-48184-2_32
https://doi.org/10.1007/11426639_27
https://doi.org/10.1007/978-3-642-24550-3_29
https://doi.org/10.1007/978-3-642-24550-3_29
https://doi.org/10.14778/3407790.3407847
https://doi.org/10.14778/3407790.3407847

	Abstract
	1 Introduction
	2 System model
	3 Secure CRDTs
	3.1 Encrypted CRDT
	3.2 Modified Merkle Patricia Trie
	3.3 Key derivation and rotation
	3.4 Global time
	3.5 Discussion

	4 Evaluation
	5 Related work
	6 Conclusion and future work
	References

