DeFIRED: decentralized authorization with receiver-revocable
and refutable delegations

Anonymous Author(s)

ABSTRACT

A lot of research has been done over the last few years regarding
decentralized authorization and access control, with existing ap-
proaches like the WAVE framework removing the need to rely on
centralized parties for the management of access policies. However,
these solutions show shortcomings regarding revocations, by not
allowing delegatees to revoke existing and decline incoming dele-
gations. Therefore, in this paper, we present DeFIRED to address
this problem. DeFIRED is a decentralized authorization framework
which allows its users to generate and revoke chains of resource
delegations in a secure and transitive manner. Furthermore, the
framework also allows the delegatees to prove that certain resources
have (not) been delegated to them. Experimental results indicate
that DeFIRED achieves similar performance results compared to
the state of the art.

CCS CONCEPTS

« Security and privacy — Authorization; Access control.

KEYWORDS

Delegation, revocation, decentralized authorization

1 INTRODUCTION

Recent statistics [16] indicate that the surface web only represents
about 4 percent of all the internet traffic around the world; the
remaining 96 percent is subsumed by the deep and dark web. While
the deep web represents the part of the internet which simply is not
indexed by popular search engines, the dark web represents a subset
of the deep web which is often associated with criminal activities
like fraud, human - and drug trafficking. The dark web, home to
over 50.000 extremist groups [10], allows malicious individuals to
buy e.g. credit card numbers [13], passports, keyloggers and even
26 million login credentials belonging to employees at Fortune 1000
companies [12]. Furthermore, part of the deep web relies heavily
on decentralized networks, making it harder for governmental
institutions to take or even track them down. As an example, after
being blocked by several companies like GoDaddy and Google [15],
The Daily Stormer now leverages the IPFS peer-to-peer hypermedia
platform [6] to provide their content. This allows visitors to store
cached versions and redistribute copies of the website more easily.

Meanwhile, a lot of research has been done over the last few years
regarding access control in decentralized settings. Existing solutions
like the WAVE framework [4] provide decentralized trust, by allowing
its users to both manage their permissions and delegate access to
other users. We discuss the WAVE framework in more detail later.
The problem with existing solutions however is that, to the best of
our knowledge, none of them requires the acknowledgment of the
delegatees to establish access delegations.

This allows malicious delegation issuers to associate unaware re-
ceivers with resources related to criminal activities, compromising

content or undesired political views, such as the ones mentioned
in the first paragraph. Furthermore, none of these solutions allow
receivers to revoke existing or decline incoming delegations in a
decentralized setting, nor do they allow these receivers to prove
that they never accepted delegations for specific resources in the
first place. While juridical procedures require a chain of proof to
establish guilt, undesired associations with compromising content
or criminal activity can cause serious personal image damage. e.g.
on social media. In today’s stream of continuous personal attacks
using fake news and social media, one needs more and more the
tools to disprove association with certain content, maybe even more
than juridical procedures need the tools to prove it.

Therefore, this paper presents the Decentralized File-oriented
Resource Delegation Framework (DeFIRED). Following the state of
the art [4], DeFIRED is a decentralized authorization framework
which allows its users to generate, revoke, prove and verify resource
delegations in a secure and transitive manner. However, in con-
trast to other existing solutions, DeFIRED also enables delegatees
to decline, revoke and disprove resource delegations. This allows
users of DeFIRED to prove that they never acknowledged obtaining
access to resources related to criminal activities, compromising
content or undesired political views. Our evaluations show that the
performance of DeFIRED is similar compared to the state of the art.

To further motivate the need for DeFIRED, we mention two ad-
ditional use cases here, the SOLID project for the decentralized web
[7] and Medicalchain for decentralized medical ecosystems [1]. In
the SOLID project, users can store their data in so-called Solid Pods
and delegate the data to other users by leveraging the Web Access
Control (WAC) [9] system. However, the specification of this system
uses the Access Control List (ACL) model to allow Solid Pod owners
to delegate their resources, without explicitly asking permission
to the delegatees. This allows owners to delegate access for Solid
Pods containing illegal content to unaware users. Next, decentral-
ized medical ecosystems like Medicalchain [1] aim on putting the
patients in control of their own medical data by using blockchain
technology. Medicalchain allows practitioners to request permis-
sion to read and write to permissioned medical records. Meanwhile,
the patients themselves remain full control over their personal elec-
tronic health records (EHR) and the corresponding access control.
However, Medicalchain only allows the patients to revoke access,
by explicitly setting up a time limited gateway during the creation
of the access policies. This renders it impossible for practitioners
to revoke their own access and prove the revocation afterwards.
This would have been a helpful feature, to allow practitioners to
prove that they are not abusing their power to unnecessarily extract
private information from the health records of old patients.

The remainder of this paper is structured as follows. Sections 2
and 3 provide the reader with additional background information
and the threat model for our framework, respectively. Next, the
system model for DeFIRED is described in section 4 on the basis of



several use case scenarios. Section 5 covers the specification of the
framework. Further, section 6 elaborates on the performance and
the security of our framework. Finally, section 7 covers the related
work, after which we conclude this paper in section 8.

2 BACKGROUND

Identity-based encryption. Identity-based encryption (IBE) [2]
represents an asymmetric cryptography system. Every user of De-
FIRED has it own Private Key Generator PK GIBE | of which the
corresponding public parameters PPTBE may be shared across the
framework. This allows other users to encrypt data according to
that PKG'BE | by freely choosing an IBE ID (a string). However,
only the owner of PKG'BE himself also knows the master secret
MS'BE of PKG'BE _ This allows the owner to generate the corre-
sponding secret key SK'BE for that IBE ID to decrypt the ciphertext.

More formally, identity-based encryption can be summarized
using the following functions:

(1) (PPIBE MS'BEY  setup(). It generates public parameters
PPIBE and a master secret MS'BE | PPIBE is public information,
but MSTBE is only known to the user.

(2) SK'BE  extract(MSIBE  pPIBE | ID) 1t extracts a secret key
SK'BE  which is unique to (PP'BE | ID). Since the user owns
MS'BE e is the only party who can extract SKTBE from PKGTBE .

(3) ¢ « encrypt(PP'BE m, ID). It encrypts a message m using
(PPTBE | ID).

(4) m « decrypt(PPIBE | ¢ SKIBE) 1t decrypts an encrypted mes-
sage ¢ using the public parameters PP'BE and a secret key
SK'BE corresponding to the identifier ID.

Distributed hash tables. A distributed hash table (DHT) [14] is
a distributed system for the indexing, retrieval and storage of key-
value pairs among individual nodes. Both the stored data elements
and network nodes have unique identifiers K . Distributed indexing
within a DHT network is realized by forcing the individual nodes
to maintain lookup tables, which contain references to other nodes
of the network. This mechanism allows the execution of query
operations for specific data, by routing the queries using UDP
messages until the target node, which is responsible for hosting the
queried data DHT (K) , is found.

Macaroons. Macaroons [8] are authorization credentials for con-
trolled sharing and delegations in distributed and decentralized
systems. Macaroons can be issued by individual target services,
with each macaroon containing a chain of caveats. Caveats allow
the issuers to embed predicates in the macaroons to describe poli-
cies. To prevent users from tampering with these policies, each
macaroon includes a unique signature, which is calculated by recur-
sively applying an HMAC cryptographic function along the chain
of caveats, starting from a private value. Since the private values
are not included in the macaroons and are therefore only known
to the issuers themselves, a user can not tamper with the caveats
while still maintaining a valid signature.

3 THREAT MODEL

Due to the similarities between WAVE [4] and DeFIRED, we decided
to adopt a similar threat model. Therefore, adversaries are able to
generate their own entities and publish them in the common DHT

Anon.

Attestations /
. revocation
- objects
Issuer

Rey, 5 .
ob?Cation ’@{\00 Verifier
/e S
DHT

Figure 1: System model of the DeFIRED framework.

of our framework. Adversaries are also allowed to consult the unen-
crypted segments of the entities published by other users. However,
adversaries should be unable to generate, revoke or modify delega-
tions in name of uncompromised users. Furthermore, users should
only be able to decrypt the encrypted segments of specific entities
if it helps them verify/prove corresponding resource delegations.
The different entities of the framework, together with the definition
for a compromised user, will be discussed further in section 4.

4 SYSTEM MODEL

Figure 1 depicts the different entities of DeFIRED, which will be
discussed in the remaining part of this section.

Users. Users can utilize DeFIRED to generate, revoke, (dis)prove
and verify resource delegations in a non-chronological manner.
These entities are represented by the framework using public-
secret user identifier pairs <P_ID ,S_ID >. The public user identifiers
P_ID are used to uniquely identify users and can be freely shared
across the framework. Conversely, a user is considered compro-
mised when his secret user identifier S_ID is revealed. Furthermore,
each user is responsible for hosting their own REST AP, to enable
direct communication between different users. This tactic is often
adopted in decentralized systems, e.g. in the SOLID project.

The remaining part of this paper uses several terms to refer
to users, in respect to their inter-relationships. Therefore, this pa-
per uses the term resource owner to refer to the owner of specific
resources. Next, a user becomes an issuer when the user sends
invitations to other users of the framework, the receivers. Finally,
this paper also refers to receivers as provers when they send proof
objects P(-)p, to other users of the framework, the verifiers. Finally,
it’s the responsibility of these verifiers to verify the correctness of
the received proof objects.

Invitations and attestations. To prevent issuers from issuing
resource delegations without the receivers’ knowledge, DeFIRED
makes a clear distinction between invitation and attestation objects.
Therefore, invitations are generated by the issuers and represent the
issuer’s admission for a specific resource delegation. On the other
hand, attestations are published by the receivers in a common DHT
and represent the receiver’s acknowledgment of a specific invitation.
In order to prevent users from forging invitations and attestations,
the secret user identifiers S_ID of the issuers and receivers are used
during the generation processes, respectively.



DeFIRED: decentralized authorization with receiver-revocable and refutable delegations

Revocations. A revocation object, Revoc(S) , is a key-value pair
<Commit(S),S > which can be stored in the DHT of the frame-
work. The DHT identifier (K ) of a revocation object, the revocation
commitment Commit(S) , represents a hashed version Hash(S) of
the value of the object, which is a randomly generating string. In
the remainder of this paper, we refer to these randomly generated
strings as revocation secrets S .

Both the issuers and receivers include uniquely generated revo-
cation commitments in the invitations and attestations, respectively.
This allows them to revoke existing delegations later on, by publish-
ing revocation objects with the corresponding revocation secrets
and commitments later on in the DHT.

Proof objects. The framework allows users to form chains of
delegations between different users, so-called proofs Pr . Therefore,
a single attestation may be insufficient for a prover in order to
allow him to prove to a verifier that certain resources have been
delegated to him. To address this issue, the concept of proof objects
P(-)p, is introduced to DeFIRED. Proof objects can be generated
by the respective provers to prove that either certain resources
have (Pp, ), or have not (P_p, ) been delegated to them. Verifiers
can afterwards fetch the necessary information from the DHT to
verify the correctness of these proof objects.

Generating proof objects does not prevent provers from further
delegating resources to other receivers of DeFIRED in the meantime.
However, to improve the readability of the remainder of this paper,
the assumption is made that a prover is always the receiver of the
last attestation of a proof.

5 USE CASE SCENARIOS DEFIRED

This section outlines the specification of DeFIRED on the basis of
several scenarios.

5.1 Scenario: user generation

As mentioned in section 4, each user U of DeFIRED is represented
using a unique public-secret user identifier pair <P_IDy, S_IDy >.
First, the secret user identifiers S_IDy = <SK55A , MSIUBE > con-
tain the master secrets MS{}BE and the secret RSA keys SKgSA.
The latter keys allow issuers and receivers to include encrypted
signatures in the invitation and attestation objects, respectively.
Other users can use the corresponding public keys PKgSA from
the public user identifiers P_IDy =< PK{}SA , PP[I]BE > to verify
the authenticity of these objects. Next, invitations contain confiden-
tial information about the resource delegations. To guarantee data
confidentiality, DeFIRED uses identity-based encryption. Issuers
can extract the public parameters PP}I;,BE from the public user iden-
tifiers P_IDg of the receivers R to encrypt specific compartments
of their invitations. This concept only allows users to extract the
confidential information from the invitations if they know the cor-
responding secret IBE keys. This concept will be explained further
in the specification.

5.2 Scenario: resource delegation

Establishing a complete resource delegation requires the issuer and
the receiver to involve in a three-step process. These individual
steps will be explained separately in the following paragraphs.

.P_IDg -@SkRsA &
« Commit(Sr) «P_ID; %
- PKRSA « Pol

- @ Signature

8 Verification information segment

< AESp1 &
« AESy

AES enc. information segment

Plaintext header

. {SKIIBE} for Vars(Pol)

Proof information segment

Figure 2: Illustration for the structure of the invitations.

1) Generating an invitation. An invitation is generated by
an issuer and consists of four compartments. The structure of the
invitation objects is also illustrated by Figure 2.

The first two compartments, the plaintext header and the en-
crypted verification information segment, store information about
the actual resource delegation. Furthermore, the verification infor-
mation segment includes information which should be stored in an
encrypted manner to provide data confidentiality and anonymity
of the issuer I of the invitation. This includes the public user
identifier of the issuer P_ID; and the policy Pol of the delega-
tion. This policy Pol is expressed using an existing RTree model
[4]. This model combines the permission of the grant (READ or
WRITE) together with a URI pattern describing the location of
the delegated resource as in a hierarchical file system (e.g. READ :
//data_storage_ID user_ID/shared ). On the other hand, the plain-
text header contains the public user identifier of the receiver P_IDpg
and arevocation commitment Commit(Sy) . Furthermore, to guaran-
tee the integrity of the invitation, the plaintext header also contains
a signature, which is indirectly encrypted using SKfSA . The sig-
nature itself represents a hash of the invitation, Hash(Invitation).
This prevents malicious entities from tampering with the content
of the invitation. In order to not reveal the identity of the issuer
I, the signature is encrypted using an ephemeral public RSA key
PK ﬁSA , which is also stored in the plaintext header. It’s secret coun-
terpart SKﬁSA , however, is encrypted using SKFSA and stored in
the verification information segment.

The last two compartments, the encrypted proof information -
and AES encryption information segments, determine which users
can extract information from the encrypted segments of the invi-
tations. More precisely, the AES encryption information segment
contains the AES keys AES 4 1 and AES 4 2, which are required to de-
crypt the verification information and proof information segments
of the invitation, respectively. The AES encryption information
segment itself is encrypted using PPIIQBE , with the policy Pol of
the delegation as the corresponding IBE ID. Since the receiver R1is
the owner of MSIIQBE , he can always generate the corresponding
secret IBE key in order to obtain the AES keys. On the other hand,
the proof information segment contains secret IBE keys SKIIBE
generated by the issuer I, for which the policies that are equally
of less strict than Pol are used as IBE IDs. We denote these policies
as Vars(Pol). Once a user can obtain these secret IBE keys, he can
use them to decrypt other invitations that grant the issuer I of the
invitation the same or more rights over the delegated resources,



| Invitation |

First layer

| Concat (@ Signature, Commit (SR)) |

Second layer

| Concat (@ Signature, Knext) |
Third layer

Figure 3: Illustration for the structure of the attestations.

compared to Pol. This process will be explained in more depth in
section 5.4.

2) Generating an attestation. The structure of the attestations
is illustrated by Figure 3. The first layer of an attestation is the
corresponding invitation generated by the issuer I itself. The next
two layers introduce two new elements to the attestation, both
generated by the receiver R: (1) another revocation commitment
Commit(SR) and (2) a DHT identifier Kpex; , pointing to the next
attestation in the personal queue of R . The purpose of the latter ele-
ment will be discussed further in the next paragraph. Furthermore,
both elements are individually concatenated with the encrypted
signature from the first layer and encrypted using the secret RSA
key SK};SA from the secret user identifier S_IDg of the receiver R.
This methodology prevents other users from also tampering with
the content of the last two layers of the attestation.

3) Adding an attestation to a personal queue. Receivers
Rorganize their generated attestations in personalized queues to
allow provers and verifiers to easily find the attestations published
by a specific receiver. This will be explained further in sections 5.4
and 5.5.

The personal queues are implemented using linked lists. In order
to host a personal queue in the DHT, receivers R publish the first at-
testation they generate with the hash of their public user identifier,
Hash(P_IDR ), as the corresponding DHT identifier. This allows
other users to easily find the heads of these personal queues, by
knowing the public user identifiers of the corresponding receivers in
advance. Next, receivers can add other attestations to their queues,
by consecutively using the DHT identifiers Kpex; stored in the
third layers of the already published attestations. Other users can
easily extract these DHT identifiers from the encrypted third layers,
by using the public RSA keys PKgSA from the public user identi-
fiers P_IDg of the receivers R. Furthermore, these DHT identifiers
can be addressed as part of a proof-of-work concept to prevent
receivers from removing attestations from their queues. However,
this concept will not be discussed further in this paper.

5.3 Scenario: delegation revocation

As mentioned in section 5.2, both the invitation and attestation ob-
jects contain unique revocation commitments Commit(S) (= Hash(S) )
generated by the issuers and receivers, respectively. By maintaining
a map with the corresponding revocation secrets S, both users can
revoke resource delegations at any time, even after the related at-
testations have been published. This can be achieved by generating
the revocation objects Revoc(S) (= <Commit(S), S >) and publish-
ing them in the DHT. It’s the duty of the provers during the proof

Anon.

processes (section 5.4), and of the verifiers during the verification
processes (section 5.5) to check, for every attestation of a specific
proof; if a revocation object has been published for any of its re-
vocation commitments. Finding such a revocation object during
these processes infers that the specific attestation is no longer valid.
The process of extracting the revocation commitments from the
invitation and attestation objects, however, will be explained later
on in section 5.5.

5.4 Scenario: (dis)proving delegations

As mentioned earlier in section 4, DeFIRED refers to receivers as
provers when they send proof objects P(-)p, to verifiers. These
proof objects can be generated by the provers to prove that certain
resources either have (Pp, ), or have not (P_p, ) been delegated to
them. The proof processes for both cases will be explained in the
remaining part of this section.

Proving resource delegations. Proving a resource delegation
with a policy Pol requires a prover to allow verifiers to reconstruct
the entire proof themselves. This is done by combining the DHT
identifiers and the ephemeral AES keys AES, 1 for every attestation
along the proof Pr into a single proof object Pp, . Therefore, Pp, is
equal to {{Kq,AES4 1} | A € Pr}. This provides the verifiers with
just enough information to verify Pp,, a process which will be
explained further in section 5.5.

Since the prover P is always the receiver of the last attestation of
the proof, he can iterate over his own personal queue to find a com-
patible attestation. This is done by generating the secret IBE keys
SK!BE for Vars(Pol) according to PKG{DBE in advance and using
them to try decrypting the AES encryption information segments of
the attestations. If the prover succeeds, he can obtain the ephemeral
AES keys AES4 1 and AES,4 5 of the compatible attestation. This
allows him to extract the required information for Pp, from that
attestation and verify its authenticity and validity. The latter two
processes will be explained later in section 5.5.

For the previous attestation of Pr, the verifier uses AES4 1 and
AES 5 5 to decrypt the verification information and proof informa-
tion segments of the current attestation, respectively. By doing so,
the prover obtains access to the public user identifier P_ID; of
the issuer I for that attestation, and the secret IBE keys SK'BE for
Vars(Pol ) according to PK G}BE . With this information, he can
iterate over the personal queue of the issuer Iin order to, once
again, find a compatible attestation for proof Pr. By recursively
applying the previously described process up until the attestation
issued by the owner of the resources is found, the prover can obtain
the necessary information to construct Pp, . That is, of course, as
long as Pr holds.

Disproving resource delegations. Disproving a resource del-
egation for a policy Polrequires a prover to prove to verifiers
that he never accepted a resource delegation that grants him at
least the same permissions over the resources compared to Pol.
This only requires the prover Pto include the secret IBE keys
SKTBE for Vars(Pol) according to PKG{)BE into the proof object
P_p, . Therefore, P_p, for a policy Pol is equal to {{SKIIBE accord-

ing to PKG{,BE }|ID €Vars(Pol)}. By using the same approach
compared to the one used in the previous paragraph, verifiers can



DeFIRED: decentralized authorization with receiver-revocable and refutable delegations

iterate over the personal queue of the prover and try to decrypt
the AES encryption information segments of the attestations. If the
verifier manages to find a compatible attestation and reconstruct
the proof Pr himself, P_p, does not hold.

5.5 Scenario: verifying proof objects

After the generation processes described in the previous section,
provers can send their generated proof objects P(-)p, to verifiers
for verification. In case of a proof object Pp, , the verifier is typically
the owner of some resources, to which the prover wants to obtain
access. The verification processes for both Pp, and P_p, will be
discussed in the remaining part of this section.

Verifying proof objects Pp, . Verifying a proof object Pp, requires
the verifier to (1) check the validity of the revocation commitments
Commit(Sy) and Commit(Sg) of each attestation of the proof Pr,
(2) check the authenticity of each attestation and (3) reconstruct
the proof with the corresponding policies. After the verification
process, the verifier can embed the resulting policy Pol of Printo a
macaroon and send it back to the prover. This way, macaroons can
be used as a caching mechanism for verified proof objects, which
increases the performance of the framework.

To improve the readability of this paper, we first explain how a
verifier can verify proof object Pp, for a proof with a single attes-
tation. As mentioned earlier in section 5.4, Pp, contains the DHT
identifiers and AES keys AES 4 ; of the attestations for the proof Pr .
The verifier can use that information to retrieve the correspond-
ing attestations from the DHT and consult the content of their
plaintext headers and verification information segments. Since the
public user identifier P_IDg of the receiver Ris stored in the first
compartment, the verifier can obtain PKgSA to decrypt the second
and third layer of an attestation. This allows the verifier to extract
the revocation commitments Commit(S;) and Commit(Sg) from
the attestation and check their validity by consulting the DHT.
Next, the verification information segment contains the encrypted,
ephemeral secret RSA key (Enc(SKﬁSA , SKIRSA )). The encrypted

segment can be decrypted using the public RSA key PKfSA from
the public user identifier P_IDy of the issuer I', which is also stored
in the same compartment. SK§SA is only used to check the au-
thenticity of the ephemeral RSA key PK}:SA from the plaintext
header. In contrast, PK ﬁSA is used by the verifier to recalculate the
encrypted signature, in order to compare it with the ones included
in the plaintext header and the last two layers of the attestation.
This process allows the verifier to check the authenticity of the
attestation.

The verifier can repeat the previously described process for ev-
ery attestation of proof Pr. To conclude the verification process,
the verifier extracts the public user identifiers P_ID; and P_IDg,
together with the policies Pol from the attestations to reconstruct
the proof.

Verifying proof objects P_p, . Verifying a proof object P_p, for
a specific policy Pol only requires the verifier to verify the cor-
rectness of the included secret IBE keys SK'BE for Vars(Pol). The
actual process of disproving a resource delegation has already been
explained earlier in section 5.4.

Operation | WAVE [ms] | DeFIRED [ms]

User generation
(1) Generating public-secret

user identifier pair 76.36 ‘ 79.91

Resource delegation

(2) Generating invitation (2) and (3): 160.21
(3) Generating attestation 155.90 1.19
Delegation revocation
(4) Publishing revocation object ‘ 6.78 ‘ 0.72
Proving delegations
(5) Generating proof object
Pp, (single attestation) 70.07 84.90
G ti f object
(6) Generating proof objec / 3413
P_p,
Verifying proof objects
Verifyi f object
(7) Veri y.mg proot o J.ec 9457 26.33
Pp, (single attestation)
Verifying proof object
(8) Y . EP ) . / 83.97
P_py (single attestation)
(9) Generating macaroon / 0.23
(10) Verifying macaroon / 0.01

Table 1: Illustration of the performance results for both the
WAVE framework and DeFIRED.

By knowing the policy Pol in advance and extracting the IBE PKG
public parameters PP{,BE from the public user identifier P_IDp of
the prover P, the verifier can encrypt random messages m using
(PP%,BE , m, ID) with ID €Vars(Pol). This finally allows the veri-
fier to verify P_p,, by checking if the secret IBE keys can be used
to decrypt the encrypted messages.

6 PERFORMANCE AND SECURITY
ASSESSMENT

This section covers both the performance and security assessment
of the DeFIRED framework.

Performance assessment. In order to validate DeFIRED and
measure its performance, we implemented the framework in Java
[5] and ran several JUnit tests within a single CPX31 instance (4
vCPUs @ 2.49 GHz, 8 GB RAM, Ubuntu 20.04) on Hetzner cloud [11].
Furthermore, to compare the performance results with the results
of the WAVE framework, the necessary wv and waved binaries
were extracted from the project’s GitHub page [3]. The source code
of the WAVE framework, in combination with the gccgo compiler,
were also used to emulate the storage layer of the framework using
an in-memory storage server.

The results for the performance evaluation are shown in table 1.
The first three segments of the table indicate that one can generate
a new user (1), delegate resources ((2) and (3)) and revoke resource
delegations (4) with DeFIRED in 79.91, 161.4 and 0.72 milliseconds,
respectively. Next, the last two segments of the table illustrate that
provers can generate proof objects Pp, (5) and P_p, (6) for a single
attestation in 84.90 and 34.13 milliseconds respectively, thereby
allowing provers to prove proofs with 11 consecutive attestations
within a second. After the construction processes, these proof ob-
jects Pp, and P_p, can be verified by the verifiers in 26.33 (7) and
83.97 milliseconds (8), respectively. Furthermore, the last segment
of the table also shows the performance results for the construction



(9) and verification (10) processes for the macaroons (0.23 and 0.01
milliseconds). These results are included in the table, to stress the
performance improvement for DeFIRED by using the macaroon
protocol as a caching mechanism for verified proof objects.

Finally, table 1 indicates that enabling receivers to decline and
disprove resource delegations only introduces a small performance
overhead to DeFIRED compared to the WAVE framework; that is,
except for the revocation (4) and proof (5) processes. Publishing
a revocation object does require the WAVE framework to add the
object to an Unequivocable Log Derived Map transparency log [4],
while DeFIRED only requires its users to host their revocation ob-
jects in the DHT. Furthermore, the verifiers of DeFIRED also checks
the validity of both revocation commitments of each attestation
during the proof processes, which explains the performance penalty
for operation (5).

Security assessment. On the premise that one can not derive a
secret RSA or IBE key from the corresponding public elements and
vice versa, DeFIRED does not allow malicious entities to forge enti-
ties in name of uncompromised users. For the invitations, forgery
and tampering is prevented by including encrypted signatures in
their plaintext headers. As discussed in section 5.2, these signa-
tures are indirectly encrypted using the secret RSA keys SKfSA
from the secret user identifiers S_ID; of the issuers I. Correctly
generating the signature of a tampered invitation would therefore
require a malicious entity to know S_ID; in advance. However, as
mentioned earlier in section 4, this would implicate that the issuers
I of the invitations are compromised. DeFIRED prevents adversaries
from forging and tampering attestations in a similar manner, by
storing copies of the encrypted signatures in the encrypted second
and third layers of these entities. Finally, malicious entities can
publish revocation objects Revoc(S) in the DHT, even if they are
not the issuer, nor the receiver of a resource delegation. Address-
ing this technique to revoke specific resource delegations however,
requires the malicious entities to know the revocation secrets S for
at least one of the revocation commitments Commit(S) stored in
the corresponding attestations.

7 RELATED WORK

DeFIRED builds upon the work of the third iteration of the WAVE
framework [4]. The WAVE framework represents a three-layer au-
thorization framework offering decentralized trust. By relying on a
graph-based authorization model, the framework represents each
separate delegation in its application layer using a revocable and
partly encrypted attestation object. Similar to DeFIRED, attestations
can be chained in order to form so-called proofs. These attesta-
tions from the WAVE framework correspond with the invitation
objects from the DeFIRED framework, and can therefore only be
revoked by the issuers of the delegations. Next, the encryption layer
of the framework provides reverse-discoverable encryption, a con-
cept which is also used as part of the proof processes for DeFIRED.
This allows certain users, the provers, to only decrypt the compart-
ments of the attestations that are relevant to their proofs. DeFIRED
addresses this concept even further, by also allowing provers to
disprove resource delegations for specific policies. Finally, the stor-
age layer of the WAVE framework relies on an Unequivocable Log
Derived Map transparency log [4] for the storage of the delegation

Anon.

and revocation objects. Integrity is guaranteed by relying on inde-
pendent auditing processes. DeFIRED eliminates these processes to
improve scalability and decentralization, by using a DHT instead.

8 CONCLUSION

This paper presented DeFIRED, a decentralized authorization frame-
work that enables delegatees to decline incoming and revoke ac-
cepted resource delegations. Furthermore, the framework allows
receivers to prove and refute delegations for specific resources.

DeFIRED realizes these goals by introducing invitation and attes-
tation objects, to represent resource delegations issued by delega-
tion issuers and accepted by delegatees, respectively. Both types of
objects can be revoked at any time. Next, the framework introduces
proof objects, which can be generated by receivers (provers) to
prove that certain resources have (not) been delegated to them.

Finally, DeFIRED supports chains of consecutive delegations,
so-called proofs. Our performance evaluations show that the frame-
work scales up to 11 consecutive delegations, while still allowing
(1) the provers to generate and (2) verifiers to validate the corre-
sponding proof objects in under one second.

REFERENCES

[1] Abdullah Albeyatti and Mo Tayeb. 2018. Medicalchain. Medicalchain. https:
//medicalchain.com

[2] Darpan Anand, Vineeta Khemchandani, and Rajendra Kumar Sharma. 2013.

Identity-Based Cryptography Techniques and Applications (A Review). 2013

5th International Conference on Computational Intelligence and Communication

Networks (2013), 343-348. https://doi.org/10.1109/CICN.2013.78

Michael P. Andersen, Sam Kumar, M. AbdelBaky, Gabe Fierro, Jack Kolb, Hyung-

Sin Kim, D. Culler, and R. A. Popa. 2019. WAVE3. University of California,

Berkeley, California, US. https://github.com/immesys/wave

Michael P Andersen, Sam Kumar, Moustafa AbdelBaky, Gabe Fierro, John Kolb,

Hyung-Sin Kim, David E. Culler, and Raluca Ada Popa. 2019. WAVE: A Decen-

tralized Authorization Framework with Transitive Delegation. In 28th USENIX

Security Symposium (USENIX Security 19). USENIX Association, Santa Clara, CA,

1375-1392. https://www.usenix.org/conference/usenixsecurity19/presentation/

andersen

[5] Anonymous. 2022. DeFIRED (Anonymous GitHub). Anonymous. https:
//anonymous.4open.science/r/DeFired

[6] Juan Benet. 2015. IPFS: Content Addressed, Versioned, P2P File System. Protocol
Labs, San Francisco, CA, US. https://ipfs.io/

[7] Tim Berners-Lee. 2016. SOLID Project. The W3C Solid Community Group.
https://solidproject.org/

[8] Arnar Birgisson, Joe Gibbs Politz, Ulfar Erlingsson, Ankur Taly, Michael Vrable,
and Mark Lentczner. 2014. Macaroons: Cookies with Contextual Caveats for
Decentralized Authorization in the Cloud. In Network and Distributed System
Security Symposium. NDSS, San Diego, California. https://doi.org/10.14722/ndss.
2014.23212

[9] Sarven Capadisli. 2021. Web Access Control specification. The W3C Solid Commu-
nity Group. Retrieved Oktober 22th, 2021 from https://solidproject.org/TR/wac

[10] Hsinchun Chen. 2012. Dark Web: Exploring and Data Mining the Dark side of the
Web. Springer, New York. https://doi.org/10.1007/978-1-4614-1557-2

[11] Martin Hetzner. 1997. Hetzner Cloud. Hetzner Online GmbH, Gunzenhausen,
Bavaria, Germany. https://www.hetzner.com/

[12] ID Agent 2021. Are Your Passwords for Sale in Dark Web Markets? 1D Agent.
Retrieved Oktober 22th, 2021 from https://www.idagent.com/blog/are-your-
passwords-for-sale-in-dark-web-markets/

[13] Positive Technologies 2018. The criminal cyberservices market. Positive Tech-

nologies. Retrieved Oktober 22th, 2021 from https://www.ptsecurity.com/ww-

en/analytics/darkweb-2018

Ralf Steinmetz and Klaus Wehrle. 2005. Peer-to-Peer Systems and Applications.

Springer, Berlin, Heidelberg. 79-93 pages. https://doi.org/10.1007/11530657

VICE 2018. After Crackdown, Neo-Nazis Are Hosting Propaganda on Censor-Proof

Networks. VICE. Retrieved Oktober 22th, 2021 from https://www.vice.com/en/

article/43bnzd/neo-nazis- propaganda-decentralized-weev

[16] Gabriel Weimann. 2019. Going darker? The challenge of dark net
terrorism. Wilson Center. Retrieved Oktober 22th, 2021 from
https://www.wilsoncenter.org/sites/default/files/media/documents/
publication/going_darker_challenge_of_dark_net_terrorism.pdf

B3

[4

(14

[15


https://medicalchain.com
https://medicalchain.com
https://doi.org/10.1109/CICN.2013.78
https://github.com/immesys/wave
https://www.usenix.org/conference/usenixsecurity19/presentation/andersen
https://www.usenix.org/conference/usenixsecurity19/presentation/andersen
https://anonymous.4open.science/r/DeFired
https://anonymous.4open.science/r/DeFired
https://ipfs.io/
https://solidproject.org/
https://doi.org/10.14722/ndss.2014.23212
https://doi.org/10.14722/ndss.2014.23212
https://solidproject.org/TR/wac
https://doi.org/10.1007/978-1-4614-1557-2
https://www.hetzner.com/
https://www.idagent.com/blog/are-your-passwords-for-sale-in-dark-web-markets/
https://www.idagent.com/blog/are-your-passwords-for-sale-in-dark-web-markets/
https://www.ptsecurity.com/ww-en/analytics/darkweb-2018
https://www.ptsecurity.com/ww-en/analytics/darkweb-2018
https://doi.org/10.1007/11530657
https://www.vice.com/en/article/43bnzd/neo-nazis-propaganda-decentralized-weev
https://www.vice.com/en/article/43bnzd/neo-nazis-propaganda-decentralized-weev
https://www.wilsoncenter.org/sites/default/files/media/documents/publication/going_darker_challenge_of_dark_net_terrorism.pdf
https://www.wilsoncenter.org/sites/default/files/media/documents/publication/going_darker_challenge_of_dark_net_terrorism.pdf

	Abstract
	1 Introduction
	2 Background
	3 Threat model
	4 System model
	5 Use case scenarios DeFIRED
	5.1 Scenario: user generation
	5.2 Scenario: resource delegation
	5.3 Scenario: delegation revocation
	5.4 Scenario: (dis)proving delegations
	5.5 Scenario: verifying proof objects

	6 Performance and security assessment
	7 Related work
	8 Conclusion
	References

