Seamless Synchronization for Collaborative Web
Services

Abstract. Collaborative web services, which allow multiple people to
work together on the same data, are becoming increasingly popular. How-
ever, current state-of-the-art frameworks for interactive client-side repli-
cation cannot handle network disruptions well, or suffer from large meta-
data overhead when clients are short-lived. This demonstration will show
SystemXEL a generic web middleware for data synchronization in browser-
based applications and interactive groupware. It offers a fine-grained data
synchronization model, using state-based Conflict-free Replicated Data
Types, and leverages Merkle-trees in the data model for efficient synchro-
nization. We provide an interactive demonstration of a public drawing
application that workshop attendees can test and experiment with. We
will also demonstrate the robustness in disconnected and offline settings.

Keywords: CRDTs - Online collaboration - Eventual Consistency.

1 Introduction and motivation

The use of online software services to collaborate remotely has been increasing
in the last decade, especially in the last year due to the COVID-19 pandemic.
Collaborative groupware applications, such as Google Docs or Microsoft White-
board, allow people to work together on the same document, without them being
present in the same geographic location. People can work from anywhere they
want, even in unstable network conditions, or while being offline. When a connec-
tion is available, changes should be replicated to all other client replicas within
1-2 seconds to keep the user experience interactive. Five seconds is the absolute
maximum before users are becoming annoyed [9]. When offline, the user should
be able to work further on the local copy of the data. Once the user comes back
online, any changes should be replicated as fast as possible. This is especially
important in unstable network conditions, where there is a limited time frame
available to replicate all updates. The requirement for offline support implies
the evolution to a more client-centric architecture, in which the different clients
all become the authoritative data replicas [I]. This is in contrast to the classical
client-server model, where the server is responsible for both data and business
logic, typically organized in a data-tier and a business-tier. While this gives rea-
sonable good performance when online, it comes at a cost of higher latency for
clients located geographically far from the main server.

The most used client-server technology for collaborative groupware is Op-
erational Transformation (OT) [3]. For example, Google Docs uses OT as syn-
chronization technology. It uses a central server that transforms the conflicting

! Name of the system has been anonymized for double-blind reviewing.



operations for each replica to allow them to be applied in a different order on the
other replicas. However, these transformations are rather complex and resource-
intensive on the server, limiting the scalability of this technique. Moreover, OT
only works for short-time disconnections and cannot be used when the client is
offline for a longer time.

Several client-centric frameworks exist for collaborative web services. They
rely on Conflict-free Replicated Data Types (CRDTSs) [I0] to automatically re-
solve any conflicts that would arise from multiple people editing the same data.
There are several kinds of CRDTs. Operation-based CRDTs (CmRDTs) must
still send all operations between the replicas using a reliable, exactly-once, mes-
sage channel, similar to OT. However, no central component to transform these
operations is required, as all operations are commutative. CmRDTs are used in
Yjs [8] and Automerge [45]. State-based CRDTs (CvRDTs) do not use opera-
tions, but instead, they send the full state to other replicas, who will merge that
state with their local state. CvRDTs are not suitable for client-centric interac-
tive applications, as the full state is too expensive to send every time. It can
however be used to replicate data between backend servers. Delta-state-based
CRDTs [7] use vector clocks to calculate which part of the data needs to be sent
to other replicas. They require much less of the message channel compared to
operation-based CRDTs, however, the total size of the metadata will grow with
every client that makes an edit. Especially in a web-based environment, where
clients are often short-lived, the metadata will become larger over time, reducing
the interactive performance. Delta-state-based CRDTs are used in Legion [0].

This demonstration will show SystemX [2], a generic web middleware for data
synchronization in the context of web-based services and interactive groupware.
SystemX leverages nested state-based CRDTs and Merkle-trees to efficiently
replicate changes. Compared to state-of-the-art frameworks, SystemX offers:

— continuous and interactive synchronization of online web clients,
— prompt resynchronization of offline clients when they come back online,
— no meta-data explosion.

Application developers can leverage SystemX to create collaborative services
that are resilient against network failures. SystemX offers a flexible data model,
with fine-grained synchronization and automatic conflict resolution. Online web
clients achieve interactive synchronization, making it possible for several people
to work fluently on the same document. However, if no internet connection is
available, such as in a tunnel or an airplane, clients can continue on their lo-
cal copy. SystemX is especially robust against these offline periods, and is able
to quickly replicate all missed updates, and achieve the same interactive perfor-
mance as before within seconds. This robustness also makes SystemX interesting
for the field-services industry, where technicians are often on the road going from
customer to customer for technical interventions. A stable internet connection is
not always available on their location, however, writing off all used materials is
important for correct billing and inventory. Using SystemX, those offline reports
will be synchronized quickly when an internet connection is available again, even
when multiple technicians are working on the same job.



Seamless Synchronization for Collaborative Web Services 3

Browser Web™RTC <script src="systemx-browser.js"></script>

: . <script>

Application Server SystemX("ws://localhost:8080") .then(
WS async (systemx) => {
s SystemX @ SystemX await systemx.set("objll.color", "#£00");
¥
S LevelDB )
</script>

Fig. 1. Deployment architecture Fig. 2. Public API example

2 Overview of the SystemX framework

SystemX is a JavaScript framework for application developers to synchronize
data between browser-clients. SystemX provides Strong Eventual Consistency
out-of-the-box, without letting the developer worry about it. Conflicts are solved
automatically by the framework.

Data model. SystemX can be used to replicate JSON data structures containing
strings, numbers, booleans, and objects; the latter can include any of those re-
cursively. SystemX uses this tree-structure of the JSON data to create a Merkle-
tree internally, which is used for efficient synchronization. State-based CRDTs
are used to resolve conflicts under-the-hood. Application developers do not need
to concern themselves with these internals. However, they need to be aware that
data is only eventually consistent. Since we are using state-based CRDTs, there
is little required from the message channel, compared to existing operation-based
approaches. There is also no need to keep track of clients or client-specific meta-
data such as vector clocks.

Architecture and API. The deployment architecture of SystemX is depicted in
Fig. [[] SystemX provides a JavaScript API for web applications to read and
modify the tree-structured data. All data is stored locally in the browser using
the IndexedDB key-value store, which is built-in in every modern browser. Data
is replicated to a server running on NodeJS using a direct WebSocket connection.
This WebSocket connection and the server are also used as a signaling channel to
set up peer-to-peer WebRTC connections between the other browser instances.
Once a WebRTC connection is initialized, the different SystemX replicas can
replicate the changes directly with each other. This reduces the latency to repli-
cate changes to other browser instances, and also improves the scalability, as
the central server is no longer a bottleneck. Fig. [2| shows an example code snip-
pet using the public API of SystemX. It connects to the WebSocket endpoint
of the NodelJS server. Developers can then use the CRUD operations get, set
and del, and the path in the tree, to retrieve and modify data. The full data
is immediately stored locally, and in the background SystemX will replicate the
changes to the server and to any other connected browser clients.

Internal synchronization protocol. Internally, the synchronization protocol al-
ways runs directly between two different replicas, either browser-to-browser or



browser-to-server. The protocol uses the Merkle-tree to find out which part of
the tree needs to be sent to the other replica. If the local hash does not match
the hash on the remote replica, then the corresponding state-based CRDT will
be used to merge the remote state with the local state. We refer to Anonymous
et al. [2] for a detailed specification of this CRDT merge operation.

3 Interactive Demonstration

We demonstrate SystemX with an interactive web-based drawing application
for all the demo attendees world-wide. The web application provides a drawing
that can be edited by multiple users simultaneously, and any conflicts that might
arise will be solved automatically by the underlying CRDTs. The attached video
shows several browser instances running on geographically distributed VMs via
remote desktop. This demonstrates the interactive latency with worldwide col-
laboration when everyone is online. SystemX is especially robust against network
failures, and we demonstrate this with two scenario’s. First, the server is stopped,
yet, all browser clients can continue to work together by using the peer-to-peer
network between them. Second, one browser instance loses its internet connec-
tion temporarily. We also demonstrate that both the online clients, as well as
the offline client, can continue to work on their copies of the data. When the
internet connection is restored, we demonstrate that the changes are merged
quickly, and interactive performance is resumed. Since the demo application is
public, participants of the conference can also use their own laptop or mobile
device to make changes to the drawing interactively.

References

1. Anonymous: Title omitted for double-blind reviewing. In: EdgeSys ’19 (2019)

2. Anonymous: Title omitted for double-blind reviewing. IEEE Transactions on Par-
allel and Distributed Systems (2021)

3. Ellis, C.A., Gibbs, S.J.: Concurrency control in groupware systems. SIGMOD Rec.
(1989)

4. Kleppmann, M., Beresford, A.R.: A conflict-free replicated json datatype. IEEE
Transactions on Parallel and Distributed Systems (2017)

5. Kleppmann, M., Beresford, A.R.: Automerge: Real-time data sync between edge
devices. In: MobiUK’18 (2018)

6. van der Linde, A., Fouto, P., Leitdo, J.a., Preguica, N., Castifieira, S., Bieniusa,
A.: Legion: Enriching internet services with peer-to-peer interactions. In: WWW
17 (2017)

7. van der Linde, A., Leitao, J.a., Preguiga, N.: A-crdts: Making J-crdts delta-based.
In: PaPoC 16 (2016)

8. Nicolaescu, P., Jahns, K., Derntl, M., Klamma, R.: Near real-time peer-to-peer
shared editing on extensible data types. In: GROUP ’16 (2016)

9. Nielsen, J.: Usability Engineering. Nielsen Norman Group (1993)

10. Shapiro, M., Perguiga, N., Baquero, C., Zawirski, M.: Conflict-free replicated data
types. In: SSS 2011 (2011)



A Requirements for the demo
The online web application will be deployed at a public URL. Preferably there
is a stable WiFi connection available in the room to allow participants to inter-

actively use this application simultaneously.

The demonstration video is available at: https://youtu.be/aI4YcSjuEzA.


https://youtu.be/aI4YcSjuEzA

	Seamless Synchronization for Collaborative Web Services

