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Abstract
Collaborative web applications are becoming increasingly
client-centric, with technologies such as WebRTC, WebWork-
ers and IndexedDB enabling a shift towards a decentralized
peer-to-peer (P2P) model. Contemporary systems provide
fault tolerance and consistency by using Conflict-free Repli-
cated Data Types for synchronization. These systems tolerate
crash-faults, but lack resilience against arbitrary faults and
malicious users, also known as Byzantine faults. Providing
Byzantine fault tolerance (BFT) in web apps is non-trivial.
Web apps are executed in web browsers on end user devices.
The scarce compute resources and the interactive nature of
collaborative web apps do require both a lightweight and
low-latency solution, while still providing the Byzantine
fault tolerance required by P2P systems.

Our work aims to fill this gap by indroducing SCEW, a pro-
gramming framework for client-centric P2P web apps that
require BFT and interactive collaboration. SCEW achieves
this by combining CvRDTs and smart contracts. SCEW rep-
resents assets shared by peers as CvRDTs with atomic reg-
ister semanctics, that provide BFT through the use of BFT-
consensus algorithms. SCEW employs smart contracts to
define the life-cycle of these shared assets, shielding the
application and it’s developers from the complexity of the
CvRDT’s consensus protocol. Experimental results indicate
that applications using SCEW can support P2P networks
with 100 peers, even when Byzantine faults are present.

1 Introduction
Collaborative web applications are becoming increasingly
popular and versatile. Browser technologies such as We-
bRTC [3], WebWorkers [7] and IndexedDB [1] enable the im-
plementation of responsive and persistent peer-to-peer (P2P)
applications in the browser [9]. Existing frameworks for de-
veloping P2P web apps such as Automerge [11], Legion [27]
and Yjs [21, 22] provide crash-fault tolerance [24] by using
CRDTs [25] and their P2P architecture. However, none of
these systems can tolerate arbitrary or Byzantine faults. The
source of these faults is diverse, ranging from software bugs
to colluding andmalicious users [14, 24]. Dealingwith Byzan-
tine faults is more complex compared to fail-stop crashes,
requiring elaborate protection mechanisms.
Byzantine fault tolerance (BFT) is often required by P2P

applications that collectively manage shared assets with real
world value. Examples are integrated loyalty programs [10]
and sharing economy [6, 15]. Abuse of shared assets in these

applications may lead to real-world damage, either in the
form of financial loss or damage to the reputation of partici-
pating users. To protect the shared assets against Byzantine
faults, P2P applications use BFT-consensus protocols [4].
Consensus protocols ensure that state changes are only com-
mitted when a quorum of peers agree on the newly proposed
state. Designing and implementing BFT-consensus protocols
is sophisticated, requiring thorough testing and formal veri-
fication to prove safety. To capitalize on development costs,
it is useful to make consensus algorithms programmable. An
abstraction for programming BFT-consensus are smart con-
tracts [26]. Smart contracts specify how users interact with
shared assets and one another. Deploying the same contract
on all peers, in combination with BFT-consensus, ensures
that the protected shared state can only evolve according to
the specifications of the contract.
Client-centric P2P web apps execute exclusively in web

browsers of end-users. This environment is characterized by
a lack of compute resources, unreliable communication and
high churn rates. Due to the interactive nature of collabora-
tive P2P web apps, a solution to BFT-consensus should not
only be lightweight, but also provide low latencies, preferably
in the order of seconds [23]. To fulfil these requirements we
present the SCEW (Smart Contract Execution for the Web)
programming framework. This framework:

1. enables development of client-centric P2P web apps
that require BFT and interactive collaboration,

2. uses state-based CRDTswith atomic register semantics
for efficient synchronization and BFT,

3. and both defines and manages life-cycles of individual
assets with state machine based smart contracts.

Experimental results indicate that SCEW can support interac-
tive collaboration in client-centric P2P web apps, supporting
networks with up to 100 users, keeping latencies below 3.2
and 2 seconds for 99% of all transactions in scenarios with
and without Byzantine faults respectively.
The remainder of this text is structured as follows: Sec-

tion 2 elaborates on motivation and use cases. Section 3
provides the reader with additional background. Section 4
presents SCEW, the main contribution of this work. Sec-
tion 5 discusses the evaluation. We consider related work in
Section 6 and conclude in Section 7.

2 Motivation and Use Cases
This section provides two motivating examples of client-
centric P2P web apps that require BFT to manage shared
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assets. The first application Loyalty Programs demonstrates
the use of BFT in protecting shared loyalty points, while the
second, Sharing Economy, aims to mitigate distrust between
users participating in a sharing economy application.
Loyalty Programs. Local shops or merchants at a market-

place can implement a shared loyalty program in which their
customers can exchange earned loyalty points at any par-
ticipating shop [10]. To avoid abuse by a single party, the
loyalty program is set up as a client-centric P2P web app
where loyalty points are managed collectively by all shop
owners, rather than a single central party. Decentralizing loy-
alty point management involves solving BFT-consensus to
prevent abuse of these points, such as double spending [18].
Sharing Economy. The sharing economy [6, 15] is based

on the observation that consumer items such as tools, cars
and other equipment are expensive, while remaining unused
for most of the time. Therefore small communities, such as
neighborhoods or apartment buildings, can decide to share
their equipment to cut down costs. To avoid unwanted fees or
privacy issues associated with central parties, sharing econ-
omy applications can be provided as a client-centric P2P web
app. The web app is responsible for tracking the items and
regulating exchange, enabling the users to trace back damage
or theft. BFT-consensus eases trust requirements, expecting
that users only trust the application and a supermajority of
the network, rather than every participating user separately.

3 Background
This section provides the background information and ter-
minology on CvRDTs, blockchains and BFT-consensus used
in the remainder of the text. Other related technologies and
systems are discussed in Section 6.
Convergent Replicated Data Types (CvRDTs) [25] are a

flavor of Conflict-free Replicated Data Types (CRDTs) [25]
providing Strong Eventual Consistency (SEC) between mul-
tiple replicas by defining a join semilattice over a shared
state. This lattice has both a partial ordering relation (≤)
and a Least-Upper-Bound (LUB) operation. Replica managers
periodically exchange their local copy of the state with each
other to propagate any received updates, merging both the
received and local state using the LUB operation. CvRDTs
only require a fair-lossy channel for communication, which
makes state-based protocols ideal for use in unreliable net-
works such as the internet. Note that attention should be
paid at design time to minimize the size of the CvRDT, as the
entire state is sent over the network during synchronization.
Blockchains [31] are an important application for (BFT)

consensus. Well known blockchains include Bitcoin [18],
Ethereum [30] and Hyperledger Fabric [2]. Blockchains repli-
cate a data-structure called the ledger, that is maintained by
the blockchain protocol. Users update the ledger by propos-
ing new transactions, aggregating them into blocks. Block-
chains such as Ethereum and Fabric use these transactions

to initiate calls to smart contracts. When executed, smart
contracts can read and write state to the ledger based on
their specification, allowing them to update the ledger in a
progammable manner. A consensus algorithm decides which
block of transactions is added next to the chain. Blocks are
chained together by hashes, making it computationally in-
feasible to change the contents of blocks or their order at a
later date. Typical choices for consensus algorithms include
Proof-of-Work (PoW) and BFT, depending on the context [31].
PoW requires vast amounts of computational resources, as it
essentially tries to brute force a solution to a cryptographic
puzzle. PoW also lacks consensus finality [29] which causes
confirmation times in the order of minutes. Regardless of
the used consensus algorithm, peers must also store the en-
tire blockchain to be able to validate the state of the ledger.
The high storage overhead combined with potentially high
resource usage and confirmation times, makes blockchains
a poor fit for client-centric interactive P2P webapps.

Tickets [9] are an alternative approach formanaging shared
assets in a setting with Byzantine faults. Tickets manage a
single asset owned by an individual user. At their creation,
Tickets are replicated across all available replica managers to
be redeemed at a later date. To redeem a Ticket, the replica
manager creates a new proposal that contains both asset
data and a signature that approves the transaction. This
proposal is then synchronized and validated by the other
replica managers, which in turn cast their vote, approving
the transaction. The Ticket is considered redeemed only after
a supermajority has approved the proposal. Tickets do not
exhibit the high storage requirements of a blockchain and are
particularly lightweight, making them suitable for browser
environments. However, their one-shot nature, together with
a lack of support for multiple ownership, restricts Tickets to
modelling only simple asset life-cycles.

4 SCEW
This section presents SCEW: a programming framework for
lightweight programmable BFT-consensus in client-centric
P2P web apps with interactive collaboration. We first present
SCEW’s core concepts, followed by an overview of its sup-
porting components, such as the atomic register CvRDT,
BMachines and primitive contracts, illustrating these con-
cepts with an example. A schematic overview of SCEW’s
main components is shown in Figure 1.

The SCEW Programming Framework. We first present
the SCEW programming framework for client-centric P2P
web apps that require both lightweight BFT consensus and in-
teractive collaboration. SCEW draws inspiration from smart
contracts and their role in blockchains, combining contracts
with the asset management model of Tickets. Applications
using the SCEW programming framework must provide the
following two components: BMachine smart contracts and
integration logic, both of which are shown in Figure 1.
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Atomic Register
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Primitive Contract

Replica manager

interface Register{ 
 get():Value 
 propose(p:Proposal):bool 
 merge(r:Register):bool 
}

interface Transition { 
 name, from, to: string 
 guard(s:State,i:Input,c:Ctx):bool 
 effect( 
   s:State,i:Input,c:Ctx 
 ):Output 
} 

interface Primitive { 
 input(v:Value,c:Ctx):Proposal 
 check(p:Proposal,c:Ctx):bool 
 retrieve(p:Proposal,c:Ctx):Value 
} 

Integration 
Logic

IndexedDB

WebRTC

0. call:propose 
1. call:input 
2. call:guard 
3. return:true 
4. return:proposal 

5. call:update 
6. call:set 
7. return:void 
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9. return:true 

Sequence: Create Proposal

(0)
(1)

(2) (3)

(4)

(5)(8)

(9)
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(7) interface RM { 
 update(r:Register):bool 
 merge(r1,r2:Register):Register 
}

Figure 1. Schematic overview of SCEW. Components are
shown as colored rectangles and communicate with each
other using the interfaces on the right. The Create Proposal
sequence at the bottom right shows the control flow for an
application that successfully proposes a new value.

Smart contracts model the life-cycle of single shared assets,
protecting them from undesired changes. Contracts provide
transitions that, when called, transform the state of the pro-
tected asset. Note that smart contracts in SCEW manage
individual assets and are not allowed to call the contracts of
other assets. Resembling Tickets, assets are managed individ-
ually rather than collectively. The latter of which is common
in blockchains. This behavior is desirable, as assets can be
synchronized on an individual level, limiting the size of the
state that is exchanged during synchronization.

The integration logic of the application acts as a consumer
of the smart contract. SCEW exposes functionality that al-
lows the application to invoke the smart contract and retrieve
the shared state. This functionality can then be used to build
user interfaces or provide other services.

Atomic Register CvRDTs. CvRDTs with atomic register
semantics [10, 12, 13] provide both synchronization and BFT-
consensus. Each register stores and protects the state 𝑠 ∈ S
of a single shared asset. The state 𝑠 consists of a value 𝑣 ∈ V
and a set of proposals 𝑃 ⊆ V for the next value of the reg-
ister, with S and V the sets of register states and values
respectively. Atomic registers ensure a consistent view of
the shared assets by only permitting a single simultaneous
change of the register’s value 𝑣 across the entire P2P network,
thus ruling out conflict in the sequence of changes in regis-
ter’s value and allowing the peers to agree on the most recent
value of the register. To support these semantics, the register
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ReadyStart Broken

Figure 2. BMachine for sharing tools in a sharing economy
use case. Users create tools with the create transition and
offer them to others by calling offer. The offer can then be
accepted (accept) or rejected (reject) by the recipient or can
be canceled (cancel) by the original owner. Items can be
decommissioned by calling report, ending the life-cycle.

CvRDT should implement a BFT-consensus protocol. This
ensures that changes of the register’s value 𝑣 are atomic, as
long as a quorum of peers behaves correctly. SCEW requires
the register CvRDT to provide the Register interface shown
in Figure 1. The get method enables the caller to retrieve the
most recent known value of the register. Calling propose pro-
poses a new value for the register and digitally signs it with
the private key of the peer for authenticity. The proposal is
then either accepted or rejected by the network that uses the
register’s BFT-consensus protocol. The consensus protocol
is implemented by the merge method, which joins the state
of two atomic registers. Joining registers enables peers to
discover new proposals and reach a consensus on the next
value of the register. Once consensus is reached, the peers
update the value 𝑣 of the register to the winning proposal
𝑝 ∈ 𝑃 , reflecting the new asset state. Paying attention to
size, the atomic register CvRDT can be implemented with
the same storage requirements and efficiency as Tickets.

BMachines. SCEW uses smart contracts to define the
life-cycle of shared assets stored in atomic register CvRDTs.
These contracts are specified as a variant of finite state
machines we call Byzantine Fault Tolerant State Machines
or BMachines. BMachines are characterized by the 7-tuple
(𝑄,𝑞0, Σ𝑖 , Σ𝑠 ,N , 𝛿,Ω) shown in Definition 4.1.

Definition 4.1. BMachine B : (𝑄,𝑞0, Σ𝑖 , Σ𝑠 ,N , 𝛿,Ω)
• 𝑄 the set of states, with 𝑞0 ∈ 𝑄 the start state
• Σ𝑖 , Σ𝑠 the input and state values respectively
• N set of transition names
• the transition function 𝛿 : (𝑄×N×Σ𝑖×Σ𝑠 ) ↦→ (𝑄×Σ𝑠 )
• Ω : (𝑄, Σ𝑠 ) the set of instance values for BMachines

BMachines consist of a set of states 𝑄 connected via the par-
tial transition function 𝛿 . Each asset is stored as a BMachine
instance IB ≡ (B, 𝜔) that combines the definition of the
BMachine B and the instance’s value 𝜔 ∈ Ω. Users of SCEW
define a BMachine B by providing a set of transitions T .
Each transition (𝑛, 𝑞𝑠 , 𝑞𝑡 , 𝑔, 𝑒) ∈ T consists of the transition’s
name 𝑛 ∈ N , a source state 𝑞𝑠 ∈ 𝑄 , a target state 𝑞𝑡 ∈ 𝑄 , a
guard 𝑔 : (Σ𝑠 × Σ𝑖 ) → B and an effect 𝑒 : (Σ𝑠 × Σ𝑖 ) ↦→ Σ𝑠
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as shown in the Transition interface of Figure 1. The transi-
tion is applicable if (i) the source state 𝑞𝑠 correspond to the
current state of the BMachine instance 𝐼B and (ii) the guard,
acting as a precondition, approves the transition based on the
current state’s associated value 𝜎𝑠 ∈ Σ𝑠 and the input 𝜎𝑖 ∈ Σ𝑖
provided by the caller. The result (𝑞𝑡 , 𝜎 ′

𝑠 ) ∈ (𝑄 × Σ𝑠 ) of a
transition is the combination of both its target state 𝑞𝑡 and
the result of the effect, the latter of which is the postcondition
of the transition that computes the next state’s associated
value 𝜎 ′

𝑠 ∈ Σ𝑠 based on the same arguments as the guard.
Using T , SCEW infers the states𝑄 and composes the partial
transition function 𝛿 to form a BMachine as in Definition 4.1.

Primitive Contracts. Primitive contracts are the glue be-
tween the high-level BMachines and the low-level atomic
registers, translating the states 𝑠 ∈ S and methods of the
atomic register into states 𝑞 ∈ 𝑄 and transitions 𝑡 ∈ T of
BMachines. The hosting register provides this translation
by calling the primitive contract with the methods provided
by the Primitive interface shown in Figure 1. These methods
enable the primitive contract to encode the information nec-
essary to execute the BMachine at all peers, using the set of
proposals 𝑃 ⊆ 𝑉 and value 𝑣 ∈ V of the atomic register.

Register Modifications. To support primitive contracts, the
atomic register has to call the Primitive interface when ex-
ecuting its methods. To initiate a state transition, users of
SCEW invoke the propose method of the hosting register,
providing the transition’s input 𝜎𝑖 ∈ Σ𝑖 as arguments. The
register then calls the input method of the primitive con-
tract to encode the proposal in a form that allows the other
peers to verify the proposal. Consequently, when fetching
the value 𝜔 of the BMachine instance IB with the register’s
get method, the register must call retrieve to decode the value
𝑣 stored in the register. Joining register state with merge re-
quires the register to check the validity of any new proposals
𝑝 ∈ 𝑃 with the check method. This method contains the val-
idation logic of the primitive contract and uses the stored
BMachine instance IB to make a decision.
Executing BMachines. To execute BMachines on atomic

registers, the primitive contract must encode the BMachine
instance (B, (𝑞, 𝜎𝑠 )) and any pending proposals in terms of
the register state 𝑠 ∈ S, such that other peers can validate any
new proposals using the BMachine contract B. One possible
encoding for proposals is (𝑛, 𝜎𝑖 , (𝑞′, 𝜎 ′

𝑠 )) ∈ (N ×Σ𝑖 ×Ω). The
field𝑛 names the transition invoked by the proposal, while 𝜎𝑖
and (𝑞′, 𝜎 ′

𝑠 ) are for validation. A proposal is deemed valid by
the primitive contract if (i) the transition 𝑛 is defined for the
current state 𝑞 of the BMachine instance (B, (𝑞, 𝜎𝑠 )), (ii) the
guard with arguments (𝜎𝑠 , 𝜎𝑖 ) yields true, (iii) the effect with
arguments (𝜎𝑠 , 𝜎𝑖 ) returns 𝜎 ′

𝑠 and (iv) the target state of the
transition corresponds to 𝑞′. Once the consensus protocol
approves the proposal, the latter is assigned as the new value
𝑣 ′ ∈ V of the register and the retrieve method can be used
to decode the new value 𝜔 ′ ≡ (𝑞′, 𝜎 ′

𝑠 ) from the BMachine

instance. The sequence for proposing a new value by the
integration logic is shown in Figure 1.

Example. Developers using the SCEW middleware only
have to implement BMachines and integration logic, being
oblivious to the BFT machinery provided by the middleware.
Listing 1 shows a stylized implementation of the offer transi-
tion, a transition which initiates the exchange of tools for the
sharing economy contract of Figure 2. From a developer’s
perspective, the guard first checks if the caller is the owner
of the tool, after which the effect updates the BMachine in-
stance value 𝜎𝑠 ∈ Σ𝑠 with new ownership information. If
both calls succeed, the state of the BMachine is updated from
Ready to Offered, completing the transition. The integration
logic for calling the transition and retrieve the resulting value
is shown in Listing 2.

Listing 1. Implementation of the offer transition, types from
the Transition interface have been expanded for clarity.
1 type Of f e r = { borrower : ID } ;
2 type Too lO f f e r = {
3 t o o l : ID ; o f f e r e r : ID ; o f f e r e e : ID ;
4 } ;
5 type S t a t e = { t o o l : ID ; owner : ID } ;
6 type Ctx = { c a l l e r : ID } ;
7 const o f f e r T r a n s i t i o n : T r a n s i t i o n = {
8 name : ' o f f e r ' , from : ' Ready ' , t o : ' O f f e r e d ' ,
9 guard : ( s : S t a t e , o : Of f e r , c t x : Ctx ) =>
10 s . owner=== c t x . c a l l e r ,
11 e f f e c t : ( s : S t a t e , o : Of f e r , c t x : Ctx ) = > ( {
12 t o o l : s . t o o l ,
13 o f f e r e r : s . owner ,
14 o f f e r r e e : o . borrower ,
15 } as Too lO f f e r ) ,
16 } ;

Listing 2. Integration logic for calling the offer transition
on a register containing the tool and retrieve the result.
1 await t o o l . p ropose ( {
2 t r a n s i t i o n : ' o f f e r ' ,
3 a rg s : { borrower : borrowerID } ,
4 } ) ;
5 const va lue = await t o o l . g e t ( ) ;

5 Evaluation
This section presents and discusses the evaluation of SCEW.
To evaluate SCEW, we implemented a research prototype
of both the middleware and a tool sharing application. The
contract used by the application is shown in Figure 2. The
atomic registers are implemented using a quorum based BFT-
protocol. We first show the experimental setup, followed by
a discussion of the results.
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Figure 3. Distribution of latency versus network size for
each scenario. Whiskers indicate the 1th and 99th percentile.

Setup. The experiments aim to measure the performance
and scalability of SCEW in terms of latency for varying
network sizes in different scenarios. The first two scenarios,
register-only and contract, aim to establish a baseline for both
the performance overhead caused by the contracts as well
as the performance of a network with no faults. The third
scenario crash investigates the impact of crashes, and the
last scenario malicious considers malicious peers which are
actively injecting faults by violating the contract.
The experiments were conducted on the Azure public

cloud. The P2P network is emulated by 4 to 20 standard F8s
v2 virtual machines with 8 vCPUs and 16GB RAM. Each VM
runs 5 containerized instances of the tool sharing application
in the chromium web browser. The P2P overlay is structured
as a flat overlay where each browser is connected with at
least 5 other peers. We modelled 4G mobile network condi-
tions with the Linux traffic control tool tc [8], increasing the
network delay to 60ms [5]. Users are emulated by exchang-
ing tools for 5 minutes at a fixed transaction rate of 1 tx/s,
scaling down proportionally as peers leave the network. This
transaction rate was chosen as an over approximation for
any real-world interactions. Each experiment was executed
ten times to increase confidence in our results.

Results and discussion. Results are shown in Figure 3.
Comparing the first two scenarios register-only and contracts,
it is clear that adding smart contracts only introduces very
limited overhead. Both scenarios show latencies below 2
seconds, even for larger networks, which is sufficient for
the interactive performance required by both use cases. The
increase in latency for larger networks can mostly be attrib-
uted to an increase in overhead by the underlying consensus
protocol, as more peers need to vote to reach the quorum.

For both the crash andmalicious scenarios 30% of all peers
are affected by faults. The 99th percentile latency increases
in both scenarios for larger networks, but stays below 3.2
seconds. This relative increase in latency compared to earlier
scenarios can be explained by the way in which the network

handles the aforementioned faults. In the case of crashes,
peers stop actively partaking in the application, while the
remaining peers try to heal the overlay network. The sce-
nario with malicious peers behaves similarly, as peers which
violate the contract will be ignored by any honest peers
that detect malicious behavior. In both cases the quorum re-
quired to reach consensus remains unaltered while the active
portion of the network decreases, meaning that a smaller
number of peers must collect the same amount of votes to
confirm a proposal. This increases the contribution of slower
peers to the critical path, increasing latency.
Overall, our evaluation shows that SCEW is suitable for

developing in client-centric P2P web apps that require light-
weight BFT and interactive collaboration. Keeping latencies
below 3.2 seconds in 99% of all transactions, even in the case
of failures in networks with 100 peers.

6 Related Work
This section discusses related work not mentioned in Sec-
tion 3. We first discuss some examples of frameworks for
collaborative P2P web apps, followed by C-CRDTs. We wrap
up with a discussion of FSolidM, a state machine representa-
tion of smart contracts for the Ethereum blockchain.
Automerge [11], Legion [27] and Yjs [21, 22] are frame-

works for developing P2P web apps in the browser. All three
frameworks make use of CRDT technology for synchro-
nization such as operation-based Commutative Replicated
Data Types [25] and Δ-CRDTs [28], making them resilient
against crashes. However, none of there frameworks consid-
ers Byzantine faults.

Computational CRDTs or C-CRDTs [17, 19, 20] are CRDTs
that perform collective computations, using CRDT semantics
to merge results from local computations into the final result.
Examples include the distributed computation of a sum [20]
and top-K leaderboards [19]. This stands in contrast with
smart contracts, which all perform the same computation
and reach a consensus on the result of a single invocation.

FSolidM [16] is a tool for building and verifying Ethereum
smart contracts as finite state machines. It does so by storing
the state of the contract as a single object that persists across
state transitions. However, this does not work well with
a state-based approach where the entire object, including
superfluous fields, needs to be sent over the network during
synchronization. We instead used a representation that re-
uses the transition’s results as the state of the register.

7 Conclusion
This work presented SCEW, a programming framework for
lightweight programmable BFT-consensus in client-centric
P2P web apps that require interactive collaboration. SCEW
manages shared assets and their life-cycle using a combina-
tion of smart contracts based on state machines and CvRDTs
with atomic register semantics, implementing a BFT-consensus
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protocol. Assets are managed individually rather than col-
lectively, allowing for efficient synchronization at the cost
of lacking support for transactions involving multiple assets.
However, the absence of cross-asset transactions poses no
problems for the use cases considered in this work. The eval-
uation shows that SCEW is suited to implement systems that
scale up to 100 peers, keeping the latency below 2 seconds in
scenarios with no failures. Even in the case of Byzantine fail-
ures, performance remains acceptable with latencies under
3.2 seconds.
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