
You Don’t Need a Ledger: Lightweight Decentralized
Consensus Between Mobile Web Clients

Kristof Jannes
imec-DistriNet, KU Leuven

kristof.jannes@cs.kuleuven.be

Bert Lagaisse
imec-DistriNet, KU Leuven
bert.lagaisse@cs.kuleuven.be

Wouter Joosen
imec-DistriNet, KU Leuven

wouter.joosen@cs.kuleuven.be

Abstract
Centralized systems relying on a trusted third party are be-
ing replaced by decentralized systems using proof-of-work
blockchains to reach consensus between multiple mistrust-
ing parties. Due to the high energy usage of such systems,
many solutions using a Byzantine fault-tolerant algorithm to
reach consensus have emerged. While those systems solve
the energy and safety concerns of proof-of-work blockchains,
they still require you to store the full ledger and need a com-
plex backend infrastructure to get started.

This paper presents a lightweight middleware running in
the browser, designed for small businesses and end-users un-
able to set up a complex private blockchain business network.
The middleware for consensus runs entirely in the browser,
with only a small server-side component used for the peer-
to-peer discovery. We achieve fast confirmation times while
guaranteeing safety and liveness for honest users. We also
do not keep a ledger, reducing the overall storage footprint.

1 Introduction
Web applications are beneficial compared to native programs
as they do not require installation and can be updated by
simply serving the new source code. Moreover, they can run
on all kind of devices, even on mobile phones. Therefore,
we expect that the browser will become the platform of
choice to deploy applications [9]. However, current peer-
to-peer (P2P) data-synchronization systems for the browser
like Legion [19] and Yjs [14] focus on full replication and
consistency, rather than security. They allow users to modify
all data and lack Byzantine fault-tolerance (BFT). BFT means
that a system can both tolerate crash failures (i.e. a node that
goes down or sends erroneous data), as well as malicious
nodes (who actively try to attack the system).

Traditionally, consensus is often achieved using a central-
ized trusted party. While this is beneficial for performance,
too much power is given to one entity, who can decide to
manipulate the consensus and charge high transaction costs.
Because trust is not always present, one can opt for amore de-
centralized consensus, where several mistrusting parties are
all responsible for the consensus. Starting with Bitcoin [13],
many proof-of-work (PoW) blockchains have emerged. How-
ever, they are too slow for many use-cases. Bitcoin needs
about one hour to confirm a transaction with high proba-
bility. Moreover, PoW needs a lot of processing power and
energy which are not readily available on mobile devices.

They also store an immutable ledger on every device, lead-
ing to large storage overhead. Lightweight clients that use
a proxy node to communicate with the blockchain do exist,
but someone still needs to set up the full-node and you need
to trust it. Another type of blockchain uses a BFT consen-
sus protocol. E.g. Hyperledger Fabric [1] can use PBFT [5]
or BFT-SMART [3] and achieves high throughput and low
latency. However, these systems require a complex backend
infrastructure, with many different servers, and still need to
store the full ledger.
The contribution of this paper is a lightweight middle-

ware for decentralized consensus that can be used by mobile
clients in their web browser. The middleware is designed to
function between small businesses without the infrastructure
and capital to set up a private permissioned blockchain, and
without the trust in a trusted third-party. The middleware:

1. tolerates both crash failures as well as malicious nodes,
2. guarantees consensus finality once a decision is made,
3. uses an efficient state-based replication protocol to

propagate updates and votes through the P2P network,
4. and is designed for lightweight setups, with only one

backend component, used for the P2P discovery.

By using a state-based protocol, there is no need to keep an
operation log to synchronize offline clients.

This paper first presents the motivation using two indus-
trial case studies and lists the requirements in Section 2.
Section 3 explains the architecture and the consensus proto-
col. Section 4 shows the preliminary evaluation. We discuss
related work in Section 5 and conclude in Section 6.

2 Motivation and requirements
In general, the middleware is designed to set up a network
between mutually mistrusting parties (called participants),
who want to offer integrated services to their customers.
This section first describes two (anonymized) industrial case
studies. Then it states the generic requirements for our mid-
dleware. At last, it discusses the adversary model.

eLoyalty. eLoyalty offers white-label software for loyalty
programs. This is normally deployed as a client-server sys-
tem, where the backend of eLoyalty handles all requests
from the client systems deployed at the customer’s premises.
Multiple companies can use this system to integrate their
loyalty network. This model works well for large companies,
but smaller local stores are often not able to participate due

1

Kristof Jannes, Bert Lagaisse, and Wouter Joosen

to the high legal burden and monetary cost to set up such
a consortium. Decentralization is especially important for
small stores in emerging markets, which lack trust in cen-
tralized large corporations or the government. This use-case
consists of several small stores who want to create an inte-
grated loyalty network, where customers can redeem their
points at any participant. Store A can award a customer with
some points, which they can redeem at any other store B
of the consortium. Later, store A has to pay back store B
for the reward given to the customer. There are two misuse
cases. First, the customer can try to use its loyalty points
at multiple places, leading to the classic double-spending
problem. Second, store A can refuse to pay back store B.

eLoans. eLoans is an integrated network of banks (the par-
ticipants) that offer loans to companies using unpaid invoices
as collateral. A company can use an unpaid invoice at any
bank of the network, but the bank where the invoice will
be paid need to verify that it isn’t already paid yet. The use-
case has four misuse cases. A company can use the same
invoice twice or use a fake one. The banks can try to boycott
each other by not verifying an invoice or can collude with
companies to let other banks accept fake invoices.

Requirements. This section lists four general requirements,
based on those two case studies. First, double-spending of
points or invoices (in general: tokens) needs to be prevented,
because the customers and the participants do not trust each
other. Second, different participants cannot cause any harm
to each other since they also do not fully trust each other.
Third, the solution needs to be decentralized, with no central
point of failure or trust. At last, the solution needs to be
lightweight, for use in mobile environments, e.g. running on
a mobile device at the local market. Therefore, it needs to be
both energy and storage efficient. The network needs to be
easy to set up, without a complex backend infrastructure.

Adversarymodel. Sincewe use a BFT protocol, only 1
3×n−1

of the n participants of the network can be malicious or
controlled by an attacker, which is the best you can do for
asynchronous Byzantine agreement [4]. They may, however,
collude and coordinate their attack. Furthermore, we assume
that no attacker can delay or interrupt the network forever:
eventually, some stream of messages needs to come through.
Attackers also cannot control the signaling and TURN server
(used for the P2P discovery). They cannot break the used sig-
natures (elliptic curve P-256 and SHA-256) or find collisions
for the used hash function (SHA-256). They cannot modify
the encrypted WebRTC messages (built-in into the browser).

3 Middleware for lightweight consensus
This section first explains the web-based architecture of the
middleware with its lightweight setup. Next, it explains how
tokens are issued and how consensus is reached. It ends with
the properties and trade-offs of the middleware.

WWW

P2P
discovery

client

client

client

client

Figure 1. Overall architecture of the web middleware.

3.1 Middleware architecture and data structures
The middleware is designed to run in web browsers on mo-
bile devices, with little server-side infrastructure. Figure 1
shows the architecture. There are two server-side compo-
nents required. The first is used for the P2P discovery. It
implements a signaling protocol and TURN service [9] and
is only used to bootstrap the P2P connections. The second
is the webserver (WWW) which serves the static resources
to the browsers. This requirement can be removed when all
clients have the required files stored on disk.

The client-side middleware consists of a JavaScript library
that runs into the browser and includes all logic for the con-
sensus protocol between the clients. The clients also replicate
the full database locally. The middleware uses signed data
structures to protect against unauthorizedmodifications. The
signatures make sure a token cannot be forged. But to make
sure that the owner cannot redeem the same token twice at
different partners, the nodes first vote where the token can
be redeemed. The partner only accepts a token and gives the
real-life reward when a majority of the nodes agree.
As tokens we use tickets. Tickets can only be used once:

they get issued and can be redeemed later. In contrast to
coins, used by most blockchains, where you can transfer
ownership to another user, instead of destroying the token.
By using tickets, we don’t need to keep track of who owns
which coin, which is typically tracked via a distributed ledger.
Furthermore, the state is synchronized using a state-based
replication protocol. Thanks to those two improvements, our
solution does not require any kind of distributed ledger.

State-based replication protocol. Between the nodes, data
is exchanged via a state-based replication protocol which
only keeps track of the current state and some meta-data.
Merkle-trees are used to quickly discover changes, as in
Dynamo [6]. By using a state-based approach, rather than
the classical operation-based approach used in most P2P
networks and blockchains, we avoid the need to store the
whole operation log forever. We also get batching out-of-the-
box, since multiple changes can be synchronized together.
Operation-based approaches need to keep track of who still

2

You Don’t Need a Ledger: Lightweight Decentralized Consensus Between Mobile Web Clients

needs to receive which operations, requiring solutions like
sequence numbers, version vectors or a total ordering.
After some time, larger than the maximum time it will

take to replicate the changes across all nodes, the redeemed
tokens can be removed from the database. The involved
parties might keep a copy of the data with the signatures
outside the datastore, but for everybody else, there is no use
to keep track of them. This ensures that the total storage
required only grows with the number of valid tokens which
are not yet redeemed. In contrast to most blockchains which
keep a ledger and growwith the total number of transactions.

Membership. The protocol is designed for a closed group of
partners who have a digital identity (public key), where the
partners know who the other parties are. New members can
be added to the network, if the other partners agree, using
the same consensus protocol as described in the next section,
except that there is a manual user interaction required to
vote. The existing members need to review the new member,
and only when they agree to add the new member, they
will vote to accept him. When 2

3 × n + 1 members agree,
the new member is considered part of the consortium and
can issue tokens and place votes. The manual verification of
partners is important in our two case studies since a token
often represents a promise from one partner to the others.
E.g. a promise that a certain invoice is valid and not yet paid.
To make sure a change in the membership does not en-

danger the safety guarantees, members can only vote for
tokens that are issued after they are accepted. When a token
is issued, it includes the identifiers of the members who are
allowed to vote for it, so every node always knows when the
required 2

3 × n + 1 is reached (this number is fixed for each
token), regardless of membership changes in the meantime.

3.2 Consensus protocol
The consensus protocol has two parts. First, a token is given
to a customer by a node of the consortium (Figure 2). Second,
the customer redeems that token to gain something with a
different node (Figure 3). This requires distributed consensus
to protect against double-spending.

Protocol to issue tokens. The customer asks a node for a
token (Figure 2, step 1). This happens when a customer buys
something and gets rewarded with loyalty points, or when a
customer asks their bank to verify an invoice. The customer
also provides its public key, so that they can later prove
ownership of the token with their private key when the
customer wants to redeem the token.
The node verifies the provided information and decides

to issue a new token representing some value. The token is
stored in the local datastore, and its unique ID is sent back to
the customer (Figure 2, step 2). It also contains a timestamp
in the future, great enough to allow all nodes to replicate the
token to their local datastore. The timestamp is only used to
prevent that a redeemed and removed token can be added

1.
2.

3.
3. 3.

Figure 2. Part 1: protocol to issue tokens.

1.

2. 3.
2.

3.
2.

3.
4.

Figure 3. Part 2: protocol to redeem tokens.

again to the datastore on a later point by a malicious node.
Once a token is added to the local datastore, it stays valid
forever, regardless of the timestamp, until it is redeemed.

Later, when the node is online, the new token is synchro-
nized between the other nodes (Figure 2, step 3). Once the
token is replicated, part 1 is completed and the customer can
now redeem the token at any node.

Protocol to redeem tokens. In part 2, the customer can go
to a different node and ask to redeem its token. The customer
sends a request to the node, together with the ID of the token
and the ID of the node, signed by its private key (Figure 3,
step 1). Because this request is signed, the node is sure that
the customer is the owner of the token and it can proof to the
other nodes that the customer gave permission to redeem it.

The node verifies the signature. If the token is not present
in the local datastore, the node does not accept it and the
protocol is aborted. If the token is already redeemed, the cus-
tomer is trying to commit fraud, and the protocol is aborted.
Otherwise, the node proposes itself as a candidate to redeem
it, using the request from the customer as proof that this
node is allowed to do this. So, no node can start a vote with-
out the cooperation of the customer. The node then votes for
itself and stores the signed vote in the local datastore and
replicates it to the other nodes (Figure 3, step 2).

When a node receives a new vote, it verifies the signatures
and votes for the current winner and replicates the vote to
the other nodes (Figure 3, step 3). The original node waits for
other votes to come in, and once a majority agrees, it accepts
the token and gives the customer its reward (Figure 3, step
4). The maximum number of Byzantine nodes that can be
tolerated is 1

3 × n − 1, where n is the total number of nodes.
The majority of votes required before executing step 4 is
2
3 × n + 1. Once a node has this many votes for the same
value, consensus is finalized and the node can be sure that it
will be recognized by all other nodes.

3

Kristof Jannes, Bert Lagaisse, and Wouter Joosen

Detect and punish dishonest nodes. Since all data and
votes are signed, other nodes can detect when a node acts
maliciously. E.g. two conflicting votes for the same token,
signed by the same node. Using this cryptographic proof,
you can go to the other partners and decide if the dishonest
partner can remain in the consortium or should be removed.
A node, therefore, has little to gain for not following the
protocol, any malicious activity will be detected and can be
punished by removing the dishonest member.

3.3 Discussion
For the remainder of this section, we discuss some impor-
tant properties of the consensus protocol described in the
previous part: safety and liveness, the notion of configurable
consensus and trade-offs of the middleware.

Safety and liveness. Safety means that nothing bad can
happen, i.e. once one node decides that a ticket is redeemed
at node X, no other node will ever decide that it is redeemed
at node Y. The protocol guarantees safety because a node
always waits for enough votes before deciding (23 × n + 1).
Liveness means that eventually something good happens,
i.e. the network makes progress, and will eventually decide.
Liveness is only guaranteed if the customer itself is honest.
With an honest customer, there can only be one valid candi-
date to redeem the token, since an honest customer does not
try to double-spend the token. Eventually, all honest nodes
will have received the new proposal and voted for the only
candidate to redeem the token. No dishonest node can try to
change the outcome by proposing a different candidate since
it does not have access to the private key of the customer.
When the customer itself is dishonest, multiple candidates
can be proposed, since the customer can try to double-spend
the token. As long as all nodes wait for 2

3 × n + 1 votes, they
can be sure that the token is not yet spent elsewhere, and
safety is ensured. However, the system can end up in a split
vote, where there are multiple candidates for the same token
whom all received some votes. But none of them have the
required majority to decide. In this case, the customer loses
its value behind the token, just like in the Avalanche proto-
col [16]. The last possibility is that nodes are dishonest and
start voting for multiple candidates for a single token. Again,
this can only happen when the customer itself is dishonest,
as the customer is the only one who can nominate values.
Therefore, we do not require liveness. When there are at
most 1

3 × n − 1 dishonest nodes, there is still cooperation of
1
2 ×h + 1 of the h honest nodes required, before the required
majority of 2

3 × n + 1 is reached for a single candidate. Since
an honest node doesn’t vote for multiple candidates, only
one candidate can reach enough votes to be accepted.

Configurable consensus. The protocol requires at least 2
3 ×

n + 1 nodes to be online, receive the votes, vote themselves
and replicate these votes back to the original node before a

token can be accepted. For small transactions, where tokens
are not worth that much, or when you know and trust the
customer, there is no need to wait for that many confirma-
tions. Instead, you can collect the signed request and give
the real-life reward immediately to the customer. Later you
can use the signed request from the customer to redeem
the token. This scenario makes sense for the eLoans case
where the identity of the customers is known, and the legal
system can help when a customer tries to fraud banks. A
third option is that you wait for some confirmations of other
nodes to increase the chance that the token is not yet spent.
But you do not wait for consensus finality before handing
over the real-life reward. This makes sense for the eLoyalty
case where you want to accept tokens fast (as customers are
waiting to checkout) while not knowing the full identity of
the customer. Most of the time, loyalty points are not worth
that much, and you don’t lose much value when a customer
turnes out malicious. In both cases, you can still decide to
wait for consensus finality when you estimate that the risk
is too high. E.g. it is a new customer who you’ve never seen,
or someone tries to redeem many loyalty points at once.

Trade-offs. The protocol described here is designed to work
in an asynchronous environment, i.e. there are no bounds on
the time a node might take. The FLP impossibility [7] states
that no algorithm can solve consensus in such a setting. As a
trade-off, we forfeit liveness for dishonest nodes. The system
stays functional, but the tokens from the dishonest customer
might be blocked forever and lost. Furthermore, we use tick-
ets instead of coins, so for each token, the nodes only need
to decide once who has redeemed it. Honest customers do
not try to double-spend tokens, so there is only one possible
value to decide on. One thing we sacrifice by not having
a ledger is auditability of the past transactions, but since
tickets can only be used once, there is little use for it.

4 Preliminary evaluation
The evaluation consists of three parts. First, we revisit the
case studies and describe which misuse cases are handled
through the middleware, and which are handled outside the
system. Second, we implemented the middleware in a web
application (plain JavaScript, no plugins required) and eval-
uate the performance. Third, we compare our lightweight
middleware to the infrastructure that is needed to set up a
permissioned Hyperledger Fabric blockchain.

Revisiting the case studies. The consensus protocol, that
we use before tokens are redeemed, prevents the double-
spending attacks. In the eLoyalty case, a store could refuse to
pay back another store. One can go to the local government
to ask for resolution (since they have digitally signed proofs)
or the misbehaving participant can be removed from the
network if the other participants agree. For the eLoan case,
the consensus also solves the possibility to boycott other

4

You Don’t Need a Ledger: Lightweight Decentralized Consensus Between Mobile Web Clients

banks since only the customer can decide who can redeem
the token. Still, customers can try to use fake invoices or even
collude with banks to get fake invoices admitted. Therefore,
banks are responsible when they validate invoices and issue
tokens. Their funds are on the line when an invoice turns
out to be non-existing (handled outside the network).

Performance evaluation. We implemented this protocol in
a JavaScript library which can be executed in a web browser.
In our experiments, we start 10 VMs in the Azure public cloud
(Standard A8v2 with 8 CPUs and 16 GB RAM), running 1-6
Docker containers with a Chromium web browser in each.
We also have one server node running, which is used for
bootstrapping the P2P connections. All VMs run in the same
data center. To simulate a real environment, we used the
Linux tc tool to increase the latency to 60 ms, which is the
latency of a typical 4G network in the US [20].
We’re interested in the time it takes to let updates prop-

agate to all nodes. We measure these times both with the
BFT protocol, as well as without, to measure the overhead
of going from a fully trusted approach to one that tolerates
Byzantine behavior. An update is a single token that gets
redeemed. It starts with one node trying to redeem a token
and ends when all nodes know that the token is redeemed.
For the experiments with BFT, this requires that all nodes
received at least 2

3 × n + 1 correct votes, while for the exper-
iments without BFT, one is enough. Another metric is the
confirmation time, this is the time it takes for the node that
made the update, to know that the network has accepted the
update. This confirmation time is a lower bound, and only
valid when all nodes follow the protocol. With Byzantine
nodes, it needs to wait for more votes, as the node receives
some conflicting votes. In this case, the confirmation time
will be closer to the synchronization time.

Table 1 shows the results for these experiments for the
different number of nodes. Each second, one token gets re-
deemed. We list both the 50th percentile (the mean), as well
as the 99th percentile, which represents most of the users [6].
With only 10 nodes, consensus can be reached in at most
1.2 s. When the number of nodes increases, this increases to
8.3 s for 50 nodes. Going to 60 nodes leads to a 3-fold increase
in synchronization times, as can be seen in Figure 4. The
reason for this is that the main-thread has trouble receiving
and sending the large WebRTC messages. Also processing
these messages on the worker thread is becoming slow. The
reason for the large messages, is that we need a vote for each
node with the correct signatures. The protocol is, therefore,
most useful in the range of 10-50 nodes.

Infrastructure requirements. We now compare the light-
weight setup of the middleware described in Section 3.1, to
the infrastructure required to set up a Hyperledger Fabric
blockchain using Hyperledger Composer. First, a web server
is required, to host the files for the web-based UI. This web
application is not responsible for the consensus, instead, it

Table 1. Synchronization and confirmation times for the
different number of nodes with and without the BFT voting
protocol, showing both the mean and the 99th percentile.
There are no confirmation times for the results without BFT,
since you don’t need to wait on other nodes.

nodes 10 20 30 40 50 60

With BFT
Sync. time [s] 50% 1.0 1.3 2.7 4.0 6.0 14.0

99% 1.4 2.0 3.9 5.8 9.9 28.6
Conf. time [s] 50% 0.5 1.0 2.3 3.3 4.9 11.9

99% 1.2 1.9 3.5 4.9 8.3 24.6
Without BFT

Sync. time [s] 50% 0.6 0.7 0.8 1.0 1.0 1.2
99% 0.9 1.3 1.8 1.9 1.9 3.1

10

20

0

30 s
Time

20 30 40 5010 60
Number of nodes

Sync. time Conf. time Without BFT

Figure 4. Increasing synchronization and confirmation
times for different number of nodes for the 99th percentile.

communicates with the Composer REST server which inter-
acts with the actual blockchain network. Since this REST
server contains the private wallet to sign transactions on
behalf of the different authenticated clients, each participant
needs its own. Next to the web and REST clients, there also
needs to be a blockchain network. The network consists of
peers and orderers. The peers are required to store the ledger
and execute the chain-code, while the orderers establish a
total order on the transactions. An orderer is not necessary
for each participant. The peers and the REST servers need a
CouchDB server for each of them because they need to main-
tain state. Each participant shall have its own peers, REST
server and CouchDB servers. At last, a membership service
provider is needed, with one CA server per participant.

If we go back to our first case study, eLoyalty, where small
stores want to start integrating their loyalty networks. Set-
ting up the nodes to run chain-code and the API, the REST
and CA server is too much work. They lack the knowledge
and budget for this kind of deployment. The pluggable archi-
tecture of Hyperledger Fabric allows for highly customized
applications and consensus with many possible enterprise
applications. However, emerging markets and local stores
can benefit from a more lightweight approach, such as the
middleware described here, which runs inside your browser.

5

Kristof Jannes, Bert Lagaisse, and Wouter Joosen

5 Related work
The related work consists of three parts. First, the existing
P2P systems for web browsers which run in a fully trusted
environment. Second, the PoW blockchains, which require
too much computing power to be considered for mobile use.
And third, the blockchains that use a BFT consensus protocol.

JavaScript frameworks like Legion [19] and Yjs [14] have
proven that the web is suitable for P2P interactions [9]. How-
ever, they all assume that members can do any operation
they want or even lack any form of authentication (Yjs).
PoW blockchains such as Bitcoin [13] protect against

double-spending and tolerate malicious users, but are not
suitable for small, mobile devices. It requires high computing
power, comparable to that of a small country [15], as well as
storage space. The size of the Bitcoin blockchain in August
2019 is 230 GB. Solutions like the simplified payments proto-
col [13] reduce this by only storing the headers, but the size
still grows over time. PoW also has high confirmation times,
i.e. it takes a long time before a transaction is accepted. Also,
there is no consensus finality, multiple blocks can be mined
at the same time, resulting in different forks. Transactions
can still be undone by a longer chain in the future.
Another type of blockchains is not based on PoW, but

on a BFT protocol. BFT based blockchains have higher per-
formance with less energy and offer proven safety proper-
ties [2]. Hyperledger Fabric [1] is a loose architecture of
components and allows you to choose your own consensus
protocol. HoneyBadger [12] is an asynchronous BFT proto-
col which doesn’t rely on any timing assumptions. It uses
asymmetric threshold encryption for censorship resistance
and is based on atomic broadcast. Algorand [8] is based on
Verifiable Random Functions [11] to let nodes check if they
are selected to participate in the agreement on the next set of
transactions. Avalanche [16] uses a metastable mechanism
to reach consensus. It is a probabilistic approach which con-
verges fast, but without any guarantees. All these approaches
maintain a distributed ledger with all the operations.

6 Conclusion and future work
This paper presented a lightweight middleware which can be
used to reach decentralized consensus between multiple mis-
trusting parties and prevent double-spending of resources.
We showed, using two industrial case studies, that you don’t
always need a ledger to solve the double-spending problem,
even when there is no centralized, trusted party. The mid-
dleware is lightweight and designed to run into the browser,
with little bootstrapping needed. You only need one extra
server component to bootstrap the P2P connections.

We successfully tested the middleware with 50 concurrent
clients and achieved confirmation times which are less than
10 s. However, scaling further, both in the number of clients
and the throughput of the system, is an open problem for
future work. Three improvements can increase the scalability.

First, we can replace the use of elliptic curve signatures to
more aggregate signatures, where multiple clients together
create a single signature, e.g. collective signatures [18] or
threshold signatures [17]. The second improvement can be
found in the P2P network. In the current network, peers
connect to other peers randomly. By moving to a structured
P2P network, such as a fat-tree overlay [10], the replication
can flow through the network more efficient. At last, the
consensus protocol is now used for each token individually.
However, blockchains typically batch multiple transactions
into a single block and achieve consensus on those blocks.

References
[1] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis, A. De

Caro, D. Enyeart, C. Ferris, G. Laventman, Y. Manevich, S. Muralidha-
ran, C. Murthy, B. Nguyen, M. Sethi, G. Singh, K. Smith, A. Sorniotti,
C. Stathakopoulou, M. Vukolić, S. Cocco Weed, and J. Yellick. 2018.
Hyperledger Fabric: A Distributed Operating System for Permissioned
Blockchains (EuroSys ’18).

[2] C. Berger and H. P. Reiser. 2018. Scaling Byzantine Consensus: A
Broad Analysis (SERIAL’18).

[3] A. Bessani, J. Sousa, and E. E. P. Alchieri. 2014. State Machine Replica-
tion for the Masses with BFT-SMART (DSN 2014).

[4] G. Bracha and S. Toueg. 1985. Asynchronous Consensus and Broadcast
Protocols. J. ACM (1985).

[5] M. Castro and B. Liskov. 1999. Practical Byzantine fault tolerance
(OSDI ’99).

[6] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A.
Pilchin, S. Sivasubramanian, P. Vosshall, andW. Vogels. 2007. Dynamo:
amazon’s highly available key-value store (SOSP ’07).

[7] C. Dwork, N. Lynch, and L. Stockmeyer. 1988. Consensus in the
Presence of Partial Synchrony. J. ACM (1988).

[8] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich. 2017. Algo-
rand: Scaling Byzantine Agreements for Cryptocurrencies (SOSP’17).

[9] K. Jannes, B. Lagaisse, and W. Joosen. 2019. The Web Browser As Dis-
tributed Application Server: Towards Decentralized Web Applications
in the Edge (EdgeSys ’19).

[10] E. Lavoie, L. Hendren, F. Desprez, and M. Correia. 2019. Genet: A
Quickly Scalable Fat-Tree Overlay for Personal Volunteer Computing
using WebRTC (SASO ’19).

[11] S. Micali, M. Rabin, and S. Vadhan. 1999. Verifiable random functions
(FOCS ’99).

[12] A. Miller, Y. Xia, K. Croman, E. Shi, and D. Song. 2016. The Honey
Badger of BFT Protocols (CCS ’16).

[13] S. Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash system.
[14] P. Nicolaescu, K. Jahns, M. Derntl, and R. Klamma. 2015. Yjs: A Frame-

work for Near Real-Time P2P Shared Editing on Arbitrary Data Types
(ICWE 2015).

[15] K. J. O’Dwyer and D. Malone. 2014. Bitcoin mining and its energy
footprint (ISSC 2014/CIICT 2014).

[16] Team Rocket. 2018. Snowflake to avalanche: A novel metastable consen-
sus protocol family for cryptocurrencies.

[17] V. Shoup. 2000. Practical threshold signatures (Eurocrypt 2000).
[18] E. Syta, I. Tamas, D. Visher, D. I. Wolinsky, P. Jovanovic, L. Gasser, N.

Gailly, I. Khoffi, and B. Ford. 2016. Keeping Authorities "Honest or
Bust" with Decentralized Witness Cosigning (SP ’16).

[19] A. van der Linde, P. Fouto, J. Leitão, N. Preguiça, S. Castiñeira, and A.
Bieniusa. 2017. Legion: Enriching Internet Services with Peer-to-Peer
Interactions (WWW ’17).

[20] 2019. opensignal.com. https://www.opensignal.com/reports/2019/01/
usa/mobile-network-experience.

6

https://www.opensignal.com/reports/2019/01/usa/mobile-network-experience
https://www.opensignal.com/reports/2019/01/usa/mobile-network-experience

	Abstract
	1 Introduction
	2 Motivation and requirements
	3 Middleware for lightweight consensus
	3.1 Middleware architecture and data structures
	3.2 Consensus protocol
	3.3 Discussion

	4 Preliminary evaluation
	5 Related work
	6 Conclusion and future work
	References

