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ABSTRACT

One of the visions of Tim Berners-Lee, the founder of the web, is that
the web should shift to a client-centric, decentralized model where
web clients become the leading execution environment for appli-
cation logic and data storage. However, existing peer-to-peer data
replication platforms only support operation in a fully trusted client
network and do not support Byzantine fault tolerance (BFT). De-
centralized solutions currently often use a heavyweight blockchain
platform in the backend to deal with distrust.

In this paper, we present WebBFT, a purely browser-based mid-
dleware for decentralized applications in small, community-driven
networks. We propose a novel, optimistic, leaderless consensus
protocol, tolerating Byzantine replicas, combined with a robust and
efficient state-based synchronization protocol. This protocol makes
WebBFT well suited for the decentralized client-centric web and its
dynamic nature with many network disruptions or node failures.
No large backend infrastructure is required, as the middleware is
purely browser-based. Using a state-based protocol, no transac-
tion log is stored, keeping the overall storage footprint small for
client-centric devices. Our performance evaluation shows that Web-
BFT can achieve transaction finality within seconds in community-
driven networks of mobile web clients, even in the context of net-
work problems, node failures, and Byzantine behavior.
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1 INTRODUCTION

Browsers and client-side web technologies offer increasing capa-
bilities to enable fully client-side web applications that can op-
erate independently and in a stand-alone fashion, in contrast to
the server-centric model [7, 31]. Web 3.0 can be defined as the
decentralized web where users are in control of their data [15],
and that replaces centralized intermediaries with decentralized net-
works and platforms [29, 84]. Community-driven, decentralized
networks can open the road to many use cases for the sharing
economy [8, 51, 70] or shared loyalty programs for local commu-
nities [9, 30]. Such client-centric collaborations can, for example,
enable a small network of merchants in a local shopping street, or
at a farmer’s market to set up a shared loyalty program between the
merchants in an ad-hoc fashion. These small-scale, specialized col-
laborative networks can empower motivated citizens to bring value
to their local community, without involving an incumbent big-tech
company that can change the rules unilateral at any moment.
However, current state-of-the-art peer-to-peer data synchroniza-
tion frameworks for the browser such as Legion [79], Yjs [63],
Automerge [41], and Anonymized [10] focus on full replication
and consistency between trusted clients. Each replica can modify
all data, and all modifications are automatically replicated to all
replicas. These protocols lack Byzantine Fault Tolerance (BFT).

Decentralized interactions between distrusting parties can be en-
abled by using a classical BFT consensus protocol such as PBFT [24],
BFT-SMaRt [16], Tendermint [21], Algorand [32], Ouroboros [40],
or HotStuff [82]. These BFT protocols are fast, but typically assume
server-to-server communication with low-latency network con-
nections, and assume every node is connected to all other nodes.
Nakamoto consensus [61], used in several blockchains such as Bit-
coin and Ethereum [23], relaxes this requirement and only requires
a loosely coupled network. However, Nakamoto consensus is too
slow for many use cases and requires a lot of processing power. At
last, Avalanche consensus [71] tries to solve the scalability prob-
lem by using the concept of meta-stability. Only a small subset of
replicas need to be sampled to reach consensus, however, you still
need a connection to every other replica, as the replicas that you
need to sample change continuously.

All these existing BFT consensus protocols are designed for
a rather heavy-weight infrastructure that has lots of processing
power, storage space, or a stable, low-latency network connection.
The motivated citizens in our envisioned use cases do not have this
kind of knowledge, budget, and infrastructure available to set up a
private network of servers running a BFT protocol between them.
They could use a public blockchain network, at the cost of paying
a fee for every transaction, which lowers the economic viability
of this approach. They rather want to use their existing hardware
such as a low-end computer, or even a mobile device. Their internet
connection is often only a domestic cable connection, unstable WiFi,
or a slow 4G connection which brings higher latency and packet
loss. Yet, they can all run a web browser on their device.

In this paper, we present WebBFT, a novel peer-to-peer data
synchronization framework for decentralized web applications be-
tween mistrusting parties. WebBFT combines the efficient operation
and lightweight setup of a peer-to-peer data synchronization frame-
work with the resilience and fault tolerance of a BFT consensus
protocol. Each browser replica only maintains the current authenti-
cated state, and does not need to keep track of an operation log or
transaction history. The novel BFT protocol does not require that
all replicas are connected to each other, as the authenticated state
and consensus votes can be replicated over multiple hops. WebBFT
consists of the following technical contributions!:

e An algorithm for lightweight, leaderless, client-side Byzan-
tine fault tolerant synchronization and consensus.

e Robust, state-based synchronization of both the data and the
votes for the consensus protocol using state-based CRDTs
and Merkle-trees.

e Efficient computation and compact storage of signatures
using the BLS signature scheme.

Our evaluation, using our application use case of a shared loyalty
program between small-scale merchants, shows that WebBFT is a

! A preliminary workshop paper [9] already described our initial goal, the use case of
loyalty points and an initial idea for a solution.



practical solution for these kinds of community-driven use cases.
WebBFT achieves transaction finality in the order of seconds, even
in networks with 100 browser clients, or in unstable network con-
ditions. No complex infrastructure is required, the participating
merchants only need a browser and an internet connection.

We envision that communities will be able to use WebBFT as
a platform to explore new applications and use cases that were
previously not feasible. WebBFT does not need any complex infras-
tructure, and it currently provides a simple JavaScript-based API,
which allows many developers to start developing decentralized
web applications. Those decentralized applications can be made
open source, which allows many people to verify and vouch for
them. Local communities who want to set up a decentralized web
application between the local participants, can use such an open-
source web application and do not need to concern themselves with
a complex infrastructure set up to run the web application.

Section 2 presents WebBFT’s lightweight BFT consensus protocol
and the state-based replication strategy. The detailed web-based
middleware architecture of WebBFT is elaborated in Section 3. Our
evaluation in Section 4 focuses on many aspects of performance
in both the optimistic scenario as well as more realistic and even
Byzantine scenarios. Section 5 elaborates on important related work.
We conclude in Section 6.

2 OPTIMISTIC STATE-BASED BFT

This section explains the state-based consensus protocol used in
WebBFT. First, it describes the adversary model and its properties.
Then it explains the protocol specification. The safety and liveness
proofs can be found in Appendix A.

2.1 Overview and adversary model

The core protocol is an asynchronous, leaderless, Byzantine fault
tolerant consensus protocol. In an asynchronous network, messages
are eventually delivered, but no timing assumption is made [27].
An adversary might also corrupt up to f replicas of then > 3f +1
total replicas. They can deviate from the protocol in any arbitrary
way. Such replicas are called Byzantine, while the replicas that are
strictly following the protocol are called honest. We assume attack-
ers cannot forge the used asymmetric signatures or find collisions
for the used cryptographic hash functions.

The protocol is used to implement an Atomic Register [46] that
can hold a single value that can be read and written by multiple
replicas. All writes are atomic, meaning that only a single state
transition can happen at any time. Extra conditions can be applied
to limit who can write to it, and which values are acceptable. Web-
BFT does not use a leader to coordinate the protocol, removing a
common single-point-of-failure compared to many existing BFT
protocols. In such leader-based protocols, the failure of a leader
leads to a long delay before consensus can be reached. The con-
sensus protocol presented here uses voting, where every replica
has exactly one vote. The set of replicas is fixed, and changes to
the replica set have to be made outside the protocol. Consensus is
reached for each register separately, which means that each register
has its own instance of the WebBFT protocol.

Anon.

Formal properties. Let R be a cluster of n replicas with f Byzan-
tine replicas and n > 3f + 1. WebBFT guarantees the following
properties:

e Non-divergence: If replicas Ry, Ry € R are able to construct
quorum certificates gcq for value val; and gc; for value valy
at version v, then val; = vals.

e Termination: If an honest replica R € R proposes a new
value at version v, eventually a replica will be able to con-
struct a quorum certificate gc for some value at version v.

The first property is a safety property and guarantees that all
state changes are atomic for the whole network. The second prop-
erty is a liveness property and guarantees that non-conflicting
transactions will be eventually executed by all replicas. Notice that
the value that is committed in this property is not necessarily the
originally proposed value. It is not guaranteed that a value will be
committed, as long as other concurrent values are proposed as well.

2.2 Protocol specification

The specification of the protocol is shown in Algorithm 1 and 2.
Each atomic register has its own state which consists of three parts.
The first part is the current value and a quorum certificate. The
quorum certificate contains signatures of a supermajority of n — f
replicas, and proves the validity of the value. The second part is a
map, which maps rounds to a collection of votes for the next value.
In each round, there can be multiple proposed values. The third part
consists of a new proposed value and a partial quorum certificate
for that value. This state is shown at the first 5 lines of Algorithm 2.

Consensus is reached in two steps, first a supermajority needs
to be reached in the last round of the votes, then a supermajority
needs to be reached for the proposed quorum certificate. The first
step will establish a resilient quorum, while the second step will
guarantee that sufficiently many replicas know that such a quorum
has been achieved.

State-based replication protocol. The current value and its quorum
certificate, and the votes and proposal when present, are replicated
by using a state-based Gossip protocol. This protocol is a peer-to-
peer version of Anonymized [10], which uses state-based Conflict-
free Replicated Data Types (CRDTs) [74] combined with a Merkle-
tree [56] to efficiently replicate the updated state. If the state of two
replicas is the same, only the root hash is sent and compared, which
limits the network usage. If the states differ, the protocol descends in
the tree looking for mismatching hashes to find out which registers
must be synchronized. By using a state-based approach, rather than
the operation-based approach of Operational Transformation [28],
operation-based CRDTs [74], or blockchains [61], we only need
to store the current state together with some metadata. There is
no need to store the full log of all operations to later convince
replicas that were temporarily offline of the new state. Replicas also
do not need to keep track of the state of other replicas, or which
messages are already received by which replica [1]. If a new value
and quorum certificate with a higher version are received, then the
protocol will accept the new state, and the protocol will reset back
to line 3 with that newer version. An example of this replication
process is shown in Figure 1. There are four non-Byzantine replicas
with an empty set of votes. Each item lists the value and the set
of signatures of the replicas that voted for it. The scenario starts
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Figure 1: State-based synchronization of an Atomic Register with 4 replicas A, B,C, D. Only the current votes[0] and proposal
are shown for brevity. Version and round are not shown as they stay always the same in this example.

with replica A proposing a new value. The state is replicated to the
other replicas randomly, and all replicas collect the votes in the set
of signatures.

Algorithm 1 Utilities (for replica r).

1: function WINNINGVALUE(votesInRound)

2 return argmax,,;LEN({v € votesInRound : v.val = val})
3: function voTESFORVALUE(votesInRound, val)
4: return {v € votesInRound : v.val = val}

5. function HASVOTED(votesInRound)

6 return 3 v € votesInRound : v.r =r

7: function voTE(version, round, val, type)

8 vote «— VOTE(val,r)

9 vote.signature « sIGN(version, round, val, type,r)
10: return vote

Reading and writing. When reading the value of a register, it
will return the currently accepted value. This request is always
executed on the local replica and does not involve any network
requests. To write a new value, a replica has to propose a new
value to the other replicas. This process is the PREPARE phase in
Algorithm 2. The proposing replica adds the new value and its vote
to round 0 of votes. As the protocol is leaderless, any replica can
be a proposing replica and multiple replicas can propose a new
value simultaneously. Replicas are only allowed to vote once in
each round for each version, so if the replica already voted for
another value in that round, it will have to wait until consensus is
reached for the current set of votes, and propose the new value for
the version after it.

Consensus. Consensus about which value will be accepted for a
version is reached in two phases, called PRE-COMMIT and COMMIT in
Algorithm 2. Honest replicas will always vote for the value with
the most votes in round 0. If a round has reached a supermajority
of votes for a single value, then no new round can be started any-
more, and the replicas will start creating a new proposed quorum
certificate. If a supermajority of the replicas have voted, but not a
single value reaches a supermajority, a new round is started and
all replicas can vote again in this new round. The replicas are only
allowed to vote on the current winner in round 0 in their view.
Because each replica might have different views on the current
set of votes in round 0, there can still be multiple values in the
next round without any supermajority for a single value. Another
factor is Byzantine nodes trying to halt the system by voting not
according to the rules. However, the set of possible values to vote

Algorithm 2 Basic protocol (for replica r).

1: value «— L
2: commitQC «— L
3: for version «— 1,2,3,... do
4: votes «— O > round — votesInRound
5 proposal «— L
> PREPARE phase
6: as a proposing replica:
7: wait for value val from client
8: votes[0] < {voTE(version, 0, val, PRE-COMMIT) }
9: as a non-proposing replica:
10: wait for value in votes
11: for round < 1,2,3, ... do
> PRE-COMMIT phase
12: if ~HASVOTED(votes[round]) then
13: val «— WINNINGVALUE(votes[0])
14: vote < vOTE(version, round, val, PRE-COMMIT)
15: votes|[round] < votes[round] U {vote}
16: wait for (n — f) votes in votes[round]
17: val «— WINNINGVALUE(votes[round])
18: valVotes < vOTESFORVALUE(votes|[round], val)
19: if LEN(valVotes) > (n — f) then
20: proposal < ProposaL(val)
21: proposal.qc «— {voTE(version, round, val, coMMIT)}
22 else
23: val «— WINNINGVALUE(votes[0])
24: vote < vOTE(version, round + 1, val, PRE-COMMIT)
25: votes[round + 1] « {vote}
26: continue
> COMMIT phase
27: wait for (n — f) votes in proposal.qc:
28: if LEN(votes) — 1 > round then
29: proposal «— L
30: continue
31 value « proposal.val
32: commitQC « QC(version, round, proposal.qc)

on gets smaller with every round, and eventually the view of all
the replicas on the votes in round 0 will become the same, and the
winning value can be chosen unanimously. If a replica detects that
another replica is Byzantine, it will exclude this Byzantine replica
permanently, and its votes do not count anymore. A replica can



act Byzantine by sending invalid state, invalid signatures, or by
voting on a value which can impossibly be the winner in round 0.
We prove the correctness of this approach in Appendix A.

Once a replica observes that a supermajority of the replicas
supports a single value, it starts working on a proposed quorum
certificate to determine if at least a supermajority of the replicas
also knows about this. In the example in Figure 1, at #3 both replica
B and replica D observe a supermajority for value 5, and they start
creating a new proposed quorum certificate. At s, replica D has
a proposed quorum certificate signed by a supermajority of the
replicas. This means that the new value 5 can be committed. The
proposed quorum certificate becomes the new quorum certificate
and the votes are removed. When another replica now receives
the state of replica D, that replica will notice that it has a value
associated with a valid quorum certificate with a larger version
number as his own. Therefore, it will accept this new value and
remove all of its own votes and the proposed certificate if any.

Optimistic fast path. For brevity, we did not show the actual
verification of signatures in Algorithm 2. However, in the basic
protocol, each time a new signature is received, it needs to be
verified. This can become quite costly, and therefore WebBFT will
use an optimistic approach. WebBFT will delay the verification of
any incoming signatures and will just accept and replicate them,
until a decision needs to be made, such as starting a new round or
starting to create a new proposed quorum certificate. Only then, all
signatures will be verified in one batch. If all signatures are valid,
the protocol can continue as normal. If there are invalid signatures,
then those will be removed and WebBFT will continue to collect
more signatures. However, WebBFT will remember this occurrence
and from now on verify all signatures once they come in. Once
consensus is reached for this version, WebBFT will move back to
the optimistic fast path. This hybrid approach enables very fast
consensus when all replicas are honest, while gracefully degrading
to a slower, more costly protocol that can detect which replicas are
actively acting Byzantine.

3 ARCHITECTURE AND IMPLEMENTATION

This section describes the architecture, deployment, and implemen-
tation of WebBFT. This middleware architecture is key to support
the BFT consensus and synchronization protocol described in the
previous section. WebBFT is fully web-based and can execute in
any recent browser without any plugins. This section first describes
the overall architecture. Then it explains our use of aggregate sig-
natures using BLS to reduce the size of the data. The last subsection
lists several performance optimization tactics.

3.1 Overall architecture

The WebBFT middleware architecture consists of five main com-
ponents (Figure 2): (i) a public interface that offers an API for de-
velopers, (ii) a peer-to-peer network component to communicate
directly with other browsers, (iii) a consensus component to handle
the consensus protocol described in the previous section, (iv) a
membership component to handle all cryptographic operations, and
(v) a store component to save all state to persistent storage.

Anon.

(i) Public interface. This component provides an API to applica-
tion developers to use this middleware. It provides four functions
to modify the application state:

e GET(key) returns the current value of the atomic register at
the given key,

e SET(key, value) submits a proposal to update the atomic
register at the given key,

e DELETE (key) deletes the atomic register at the given key. A
tombstone is kept for correct replication,

e LISTEN(key, callback) supports reactive programming
by calling the callback with the new value each time a new
value for the register is confirmed by the network.

Apart from those functions, the middleware also provides a con-
structor function to initialize the middleware by passing the fol-
lowing four configuration parameters: the list of all members of
the network together with their public key, the private key of the
replica, the URL to the signaling server to set up the peer-to-peer
connections, an access-control callback to verify state changes. This
access control callback is called before voting for a new proposed
value, with both the old and new values as arguments. It should
return a boolean whether to allow this change or not. This callback
enables the implementation of basic access control policies on the
values. One example is to embed the public key of the owner into
the value and requiring each new value to be signed by the owner.
This value can only be changed by the owner, and supports passing
ownership by changing the embedded public key.

(ii) Peer-to-peer network. The P2P Network component manages
the peer-to-peer network and is responsible for the replication of
the state-based CRDTs. Many browser-based replicas are connected
to each other using WebRTC (Web Real-Time Communications).
WebRTC enables a browser to communicate peer-to-peer. However,
to set up those peer-to-peer connections, WebRTC needs a signaling
server to exchange several control messages. Once the connection
is set up, all communication can happen peer-to-peer, without a
central server. Another WebRTC peer-connection can also be used
as a signaling layer, so once a replica is connected to another one,
it can also connect to all of its peers, without the need of a central
signaling server. In our adversary model, this server is assumed to
be trusted. If this signaling server would be malicious, the safety
of the system is not endangered as no actual data is sent to this
central server. However, some peers might not be able to join the
network and the required supermajority might not be reached,
which violates liveness. The use of multiple independent signaling
servers can lower the risk of this happening.

(iii) Consensus. The Consensus component handles the consen-
sus protocol described in Section 2. It maintains a Merkle-tree of
all atomic registers and uses the state-based CRDT framework
Anonymized [10] to replicate the local state to other replicas using
the P2P Network component. The Merkle-tree is constructed using
the Blake3 [65] cryptographic hash function.

(iv) Membership. The Membership component contains all crypto-
graphic material and is responsible for all cryptographic operations
such as signing and verification of signatures. We use an aggregate
signature scheme called BLS [19]. Section 3.2 provides more details
about the BLS implementation.
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Figure 2: Browser-based architecture of WebBFT.

(v) Store. At last, the Store component saves all state to the In-
dexedDB database. IndexedDB is a key-value datastore built inside
the browser. Each atomic register and the Merkle-tree are serialized
to bytes and stored there under the respective key. This enables
users to close the browser and continue afterwards without losing
the current state.

3.2 Aggregate signatures using BLS

The consensus protocol in Section 2 is resource-intensive with
respect to aggregation and verification of digital signatures. Sig-
natures must be continuously collected and verified. This means,
in every intermediate state of a transaction, each party needs to
keep track of all incoming signatures and verify them to prevent
malicious scenarios. Persistence, management, and transmission
of these signatures are costly, especially in a browser-based set-
ting. Therefore, our protocol requires short and compact signatures
to reduce storage and network footprint. Boneh-Lynn-Shacham
(BLS) [19] presented a signature scheme based on bilinear pairing
on elliptic curves. The size of a signature produced by BLS is com-
pact since a signature is an element of an elliptic curve group. The
aggregation algorithm [18] outputs a single aggregate signature
as short and compact as the individual signatures, unlike other
approaches that rely on ECDSA or DSA (e.g. Schnorr [73]).

Other state-of-the-art BFT systems such as SBFT [33] and Hot-
Stuff [82] also use aggregate or threshold signatures. However, they
use it in a different way. They let the leader compute the aggregate
signature. WebBFT uses a different approach, once a proposed quo-
rum certificate has reached a supermajority of the votes, any replica
can aggregate these into one single aggregated BLS signature.

Efficient aggregation. The protocol described in Section 2 per-
forms a considerable number of signature aggregations. But the
standard scheme is vulnerable to rogue public key attacks. The
state-of-the-art approach [17] to mitigate such attacks is to com-
pute (t1,...tn) < Hi(pki, ..., pkn) for each Agg invocation and
compute o « []%, O'iti, where pk; is the public key of replica i,
H1 is a hash function, and o; is a signature produced by replica i.
Although the t; values can be cached, the computation of o would
be costly. Moreover, Agg does not take as input the same set of
public keys at different states of a transaction in our consensus
protocol. Therefore, we distribute the computations by moving the
calculations of the t; and ait" values to the signing parties, and as a
result, these computations are performed once. Now, any replica
can run Agg by only computing oj...0,. The security properties

of BLS remain intact [17], and we obtain more efficient aggrega-
tions at scale. We provide the mathematical background and formal
specification of our optimized BLS scheme in Appendix B.

3.3 Performance optimization for browsers

This section contains four important performance optimizations to
host this middleware inside web browsers at scale.

Polyglot middleware. WebAssembly is a binary instruction format
that addresses the problem of safe, fast, and portable low-level code
on the Web. Higher-level languages such as C, C++, and Rust can be
compiled to WebAssembly and can be executed in a modern browser
on any platform independent from the underlying hardware. Web-
Assembly executes significantly faster than JavaScript [36], how-
ever, it is not as fast as native code [38]. We used WebAssembly for
two key components that are computationally intensive. These com-
ponents are the hashing component to build the Merkle-tree and
the BLS module for aggregate signatures. They are implemented in
the Rust programming language [52] and C respectively, and they
are compiled to WebAssembly to run inside a browser. Besides the
performance improvement of WebAssembly over JavaScript, using
Rust and C also enabled us to use well-tested libraries (BLAKE3?
and blst?) instead of implementing these components ourselves.

Parallellization using Web Workers. Web Workers are separate
browser threads, which enable us to run computations off the main
thread to keep the User Interface responsive. The middleware is
distributed over four different threads. The Public interface and
P2P Network components run on the main thread together with
the application. The P2P Network component is also located on the
main thread because WebRTC is not available inside Web Workers.
The other three components: Consensus, Membership and Store, are
each located in a separate Web Worker. This enables long-running
computations, e.g., BLS-signature verification, to run in a separate
thread without blocking concurrent operations in the other threads.

Caching. Caching is used in several places for performance rea-
sons. The most important place is in the Membership component in
WebAssembly. While WebAssembly itself is fast, the boundary be-
tween JavaScript and WebAssembly is not. Function calls between
the two environments can only use numbers directly. Any other
data structure has to be serialized to bytes and is allocated a spot in
the WebAssembly memory buffer. In WebAssembly, these bytes can
be decoded to the appropriate Rust data structure. For this reason,
all cryptographic material such as public keys and the private key

2https://github.com/BLAKE3-team/BLAKE3/
3https://github.com/supranational/blst/



are passed to WebAssembly at initialization, avoiding this costly
transfer for subsequent operations. In the Consensus component, all
CRDT and Merkle-tree structures are cached in memory. As such,
a costly fetch from disk and decoding from bytes can be avoided.
Batching of writes for IndexedDB. The last important optimization
concerns IndexedDB. IndexedDB is an in-browser database for
structured data supporting fast reads and lookups by using indexes.
We found that when too many write requests are sent to IndexedDB,
the latency significantly starts to increase up to one second or even
more. When one atomic register is updated, also all intermediate
nodes until the root node of the Merkle-tree are updated. This is
due to the tree-shaped structure of the Merkle-tree. So, one write
somewhere down the tree, leads to a cascading of writes, and every
write causes the root node to be written as well. To reduce the high
latency, we batched all writes to IndexedDB in-memory in the Store
component. If multiple writes for the same key happen in the same
batch, only the last one is executed. At fixed intervals, the whole
batch is written to IndexedDB. Since many duplicate writes are
now avoided, the number of writes is reduced significantly. This
solved the problem of high read latency. To avoid data loss, local
update operations by the user or consensus votes on this replica
are immediately written to disk and bypass the write-batching.

4 EVALUATION

We validated the WebBFT middleware with the loyalty points use
case. The first section presents this validation. Next, we present
three different benchmarks with different scales. The first bench-
mark shows the performance results in the optimistic scenario with
no network failure or Byzantine failures. The second benchmark
evaluates the performance in a more realistic scenario with some
network failures. The third benchmark evaluates the performance
in the presence of a Byzantine replica.

Validation in the loyalty points use case. The deployment of the
loyalty points use case consists of three services: a web application
running in a browser for each merchant, a web server to serve the
static web application files, and a signaling server to set up WebRTC
peer-to-peer connections between the browsers. The web server
is optional. Every merchant can also store those application files
themselves and load them from their local file system. The signal-
ing server is a trusted component. However, if trust is not present,
you can set up multiple signaling servers to reduce potential mis-
behavior. No actual data is sent to the signaling server. It is only
used to discover other peers on the network. To have a baseline,
we compare WebBFT to two other existing state-of-the-art systems
for BFT consensus: BFT-SMaRt [16, 76] and Tendermint [21, 22].
BFT-SMaRt is a more traditional BFT protocol, similar to PBFT [75],
where all replicas are connected to each other, and one leader drives
the protocol. If that leader fails, a new one will have to be elected
before any progress can be made. Tendermint [22] uses Gossip
for communication between the replicas. There is still a leader,
however, that leader changes frequently.

Test setup. To test the performance of the middleware, we imple-
mented the use case and deployed it on the Azure public cloud. We
used 21 VMs (Azure F8s v2 with 8 vCPUs and 16 GB of RAM) with
one VM acting as a central server running the web server and sig-
naling server. The other VMs are running Chrome browsers inside
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Figure 3: Latency in the optimistic scenario with no failures.
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Figure 4: Network usage in the optimistic scenario with no
failures.

a Docker container. Each of those VMs holds one to five browser
instances for different scales of the benchmarks. To simulate a truly
mobile environment, the network is delayed to an average latency
of 60 milliseconds using the Linux tc tool, which simulates the
latency of a 4G network [67]. Every test is executed 10 times to
ensure the results are reliable.

We are interested in the time it takes to confirm a transaction,
experienced by the browser that submitted the transaction. Each
transaction is a group of loyalty points being changed from owner.
For example, a merchant gives some loyalty points to a customer
or a customer redeems their loyalty points with a merchant. In the
evaluation, the browser clients will do one transaction per second.
This throughput is more than enough for the local community-scale
use cases we envision. We compare the latency, network bandwidth,
and disk usage with a different number of browsers. We show a
boxplot of the latency results instead of only the average, as all
users should experience fast confirmation times, and not only the
average user [25].

Optimistic scenario. In the optimistic scenario, every replica is
honest and no replicas fail, so the fast path can be used. One single
aggregate signature is verified before each decision, avoiding costly
signature verifications after every message. As every replica is
honest, this aggregate signature is correct and the new value can
be accepted by all replicas.

Figure 3 shows the latency for the different technologies. For
the use case of loyalty points, transactions must be confirmed fast,
as people are waiting at checkout to receive or redeem loyalty
points. WebBFT can confirm transactions within 4 seconds, even
with a network of one hundred browsers. BFT-SMaRt can confirm
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Figure 5: Latency in the realistic scenario with network fail-
ures.

transactions within half a second. This is because all replicas com-
municate directly with each other. However, having all replicas
directly connected to each other is not realistic in a mobile peer-to-
peer network. In contrast, WebBFT and Tendermint use Gossip and
need multiple hops before all replicas are reached. This also causes
the increased latency. Furthermore, BFT-SMaRt uses HMAC to sign
requests, which are an order of magnitude faster than the asym-
metric signatures used in WebBFT and Tendermint. We can see a
similar pattern in the bandwidth requirements shown in Figure 4.
In the large-scale scenario with 100 browsers, WebBFT uses less
than 3 Mbit/s, which is acceptable for a typical mobile network.

Realistic scenario. The same benchmark is now repeated with 25%
of the replicas failing during the benchmark. A failure is simulated
by dropping all network packets to and from that replica. Replicas
fail one by one, with a 5-second delay between each failure. As all
systems are Byzantine fault tolerant, they should be able to tolerate
up to 33% of the replicas failing or acting Byzantine.

Figure 5 shows the latency in this scenario. WebBFT is not im-
pacted much by the failing replicas and can still confirm transac-
tions within 5 seconds. The impact on Tendermint is also small, but
the latency is doubled to about 10 seconds. BFT-SMaRt however
needs to use a costly leader election protocol when the current
leader fails. This process takes some time, during which no trans-
action can be committed. Once a leader is chosen, the same fast
performance can be achieved again. This behavior is clearly visible
in Figure 5. The median latency of BFT-SMaRt is not affected by
the failures, however, the tail latency increases to 27 seconds for
the scenario with 80 replicas. It cannot handle the case with 100
replicas. BFT-SMaRt is unable to handle large network sizes when
the latency between the nodes is higher than usual, e.g., in geo-
distributed systems or on mobile networks. This has been shown in
the literature before [20]. Tendermint does have a leader, but it is
rotated round-robin all the time. This makes the failure of a leader
less severe, as a new one will quickly be elected anyway.

Byzantine scenario. For WebBFT, we performed an extra bench-
mark with Byzantine replicas. As long as the honest replicas are
still using the optimistic fast path, the Byzantine replicas will send
extra invalid signatures. As the signatures are only verified when a
supermajority is reached, the honest replicas only realize this at the
end, and they cannot find out which replicas are Byzantine. Once
the optimistic fast path is disabled, the signatures are verified for
every message, so malicious replicas can be detected and excluded
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Figure 6: Comparison of the latency in the normal scenario
with one where a Byzantine replica tries to halt the network.

from the network. In this case, the Byzantine replicas keep the
signature intact to avoid being detected. However, they will try to
slow down the consensus by not voting themselves.

The latency in this Byzantine scenario is shown in Figure 6. Web-
BFT can handle Byzantine replicas very well for smaller networks,
however, for networks of size 100 replicas, the tail latency becomes
7 seconds. Which might already be quite high for the use case of
loyalty points. We did not test the effect of Byzantine replicas for
BFT-SMaRt or Tendermint. As they do not use a fast path when ev-
eryone is honest, the impact is less. However, if the current elected
leader happens to be Byzantine, it can delay the consensus until
some timers end and a new leader is elected [6].

Discussion and conclusions. We have shown that WebBFT can be
used for the loyalty points use case with up to 100 different mer-
chants, even when some of them are acting maliciously. WebBFT
can achieve similar latencies as other Gossip-based BFT protocols,
such as Tendermint. Traditional leader-based BFT protocols, such
as BFT-SMaRt, are much faster in the optimistic setting. However,
in the more realistic and mobile environment we envision, this de-
pendability on a long-term leader results in long tail-latencies when
that leader fails. WebBFT does not use a leader and is especially
robust against network and node failures, which are typical in a
mobile setting. BFT-SMaRt also requires that the leader is connected
to all other replicas, and at least a supermajority of the replicas
need to be online at the same time. WebBFT does not impose this,
consensus can be reached gradually over time, as the full state of the
proposals and votes propagates through the network. WebBFT can
confirm transactions fast, in the order of seconds, without needing
a complex back-end setup or wasting a lot of energy. WebBFT has
a small storage footprint due to its state-based nature.

5 RELATED WORK

Several client-side frameworks for data synchronization between
web applications exist: Legion [79], Yjs [63, 64], Automerge [41],
and Anonymized [10]. They make use of various kinds of Conflict-
free Replicated Data Types (CRDTs) [74] to deal with concurrent
conflicting operations, and can synchronize data peer-to-peer. They
are easy to set up and only require a browser and a peer-to-peer
discovery service. However, they assume trusted operation as the
default setting. Some work has been done in a semi-trusted set-
ting [11, 80]. None of them can tolerate Byzantine parties.



Open or permissionless blockchains such as Bitcoin [61] and
Ethereum [23] allow everyone to participate and use Proof-of-
Work (PoW) to reach agreement over the ledger [35]. However,
PoW has several flaws [14]. PoW uses a lot of processing power and
energy [66] and performs poorly in terms of latency. It assumes a
synchronous network to guarantee safety. When this assumption
is violated, temporary forks can happen in the blockchain as live-
ness is chosen over safety. Therefore, PoW blockchains do not offer
consensus finality, instead one needs to wait for several consecu-
tive blocks to be probabilistically certain that a transaction cannot
be reverted. Blockchains require a lot of storage space, as the full
blockchain typically needs to be stored on every node. Simplified
Payment Verification (SPV) mode [61] for clients can reduce the re-
source usage at the cost of decentralization. PoW gains its security
from the fact that one needs a lot of CPU power to control the net-
work, which is too costly for an attacker compared to the revenue
for a successful attack. Other variants of resource consumption
exist, such as Proof-of-Space [3] or Proof-of-Storage [4].

ByzCoin [43] uses PoW for a separate identity chain to guard
against Sybil attacks but uses a BFT protocol to order transactions.
ByzCoin makes use of collective signatures (CoSi) [77] and a bal-
anced tree for the communication flow. CoSi makes use of aggregate
signatures by constructing a Schnorr multisignature [73]. However,
CoSi needs multiple communication round-trips to generate the
multi-signature and assumes a synchronous network.

Tendermint [21, 22], used in Cosmos [45], uses Proof-of-Stake (PoS),
where voting power is based on the amount of cryptocurrency
owned by each replica. Because block times are short, in the order
of seconds, there is a limited number of validators Tendermint can
have because finality needs to be reached for each block. It is also
not resistant to cartel forming, which allows those with a lot of
cryptocurrencies to work together to control the network.

Instead of reaching consensus between all the replicas of the
network, Stellar [50, 53] uses quorum slices to reach federated
Byzantine agreement in an open network. Replicas should choose
adequate quorum slices for safety. However, today’s Stellar network
is highly centralized and many replicas use the same few validators.
Two failing validators can make the entire system fail [60].

Other protocols use a randomized approach. Ouroboros [40],
HoneyBadger [59] and BEAT [26] use distributed coin flipping for
consensus. HoneyBadger [59] also uses threshold signatures [75]
for censorship resilience. Algorand [32] uses Verifiable Random
Functions [57] to select a random committee for the next round.
Avalanche [71, 72] uses meta-stability to reach consensus by sam-
pling other replicas without any leader. While Avalanche is light-
weight and scalable, it needs to be able to sample all other validators
directly. The number of connections one can open in a browser
without performance loss is limited. WebBFT supports propagation
of votes over multiple hops.

Permissioned blockchains such as Hyperledger Fabric [2] have
closed membership and often use a BFT consensus protocol to order
transactions. The first known BFT protocol is Practical Byzantine
Fault Tolerance (PBFT) [24]. Other protocols bring improvements
to the original PBFT protocol. Zyzzyva [44] uses speculative ex-
ecution which improves latency and throughput if there are no
Byzantine replicas. However, its performance drops significantly
if this premise does not hold. 700BFT [5] provides an abstraction
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for these BFT algorithms. These protocols are targeting a small
number of replicas in a local network. They generally work in two
phases: the first guarantees proposal uniqueness, and the second
guarantees that a new leader can convince replicas to vote for a
safe proposal. HotStuff [82] proposed a three-phase protocol to
reduce complexity and simplify leader replacement. This makes
HotStuff more scalable. All these algorithms use a leader to drive
the protocol. When the leader is malicious, the performance can de-
grade quickly [6]. GeoBFT [34] is a topology-aware, decentralized
consensus protocol, designed for geo-distributed scalability.

Another approach is to use a trusted hardware component [12,
39, 49, 81, 83]. These are faster and less computationally intensive
but require specialized hardware to be present. Moreover, trusted
execution environments have been broken in the past [42, 48, 78].

There are several proposals to improve the performance and
response time of Hyperledger Fabric. StreamChain [37] reaches
consensus over a stream of transactions instead of blocks. Fabric-
CRDT [62] uses CRDTs to support concurrent transactions to occur
in the same block, using the built-in conflict resolution of CRDTs
to resolve the conflict automatically. Other approaches also borrow
from CRDTs: PnyxDB [20] supports commuting transactions to be
applied out-of-order. A novel design for gossip in Fabric [13] im-
proves the block propagation latency and bandwidth. While these
improvements make Hyperledger Fabric faster, none of them try to
reduce the infrastructure requirements to be able to easily set up
an untrusted peer-to-peer network.

The Bitcoin Lightning Network [69] or state channels for Bit-
coin [47] or Ethereum [55, 58, 68] are off-chain protocols that run
on top of a blockchain. A new state channel between known par-
ticipants is created by interacting with the blockchain. After its
creation, participants can use this channel to execute state transi-
tions by collectively signing the new state. These transactions do
not involve the blockchain and have fast confirmation times and no
transaction costs. However, state channels assume all participants
to be always online and honest. If this is violated, the underlying
blockchain needs to be used to resolve the conflict, or a trusted third
party can be used [54]. WebBFT uses a similar state-transitioning
protocol where only the latest collectively agreed state needs to be
stored. However, WebBFT can tolerate both failing and malicious
replicas, without resorting to a blockchain or a trusted third party.

6 CONCLUSION

In this paper, we presented WebBFT. A browser-based middleware
for decentralized, community-driven web applications. WebBFT
uses an optimistic, leaderless BFT consensus protocol, combined
with a robust and efficient state-based synchronization protocol
based on state-based CRDTs and Merkle-trees. WebBFT uses an
optimized BLS scheme for efficient computation and storage of
signatures. It supports a client-centric, browser-based, state-based,
permissioned ledger with a low infrastructure and storage footprint
for small-scale, citizen-driven networks. WebBFT offers consistent
and robust confirmation times to achieve finality of transactions
in the order of seconds, even in failure settings and Byzantine
environments. In contrast to traditional blockchains, WebBFT does
not store a transaction log or blockchain, keeping the overall storage
footprint small.
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WebBFT: a Client-centric Web-based BFT Platform for Decentralized and Resilient Community Web-Apps

A CORRECTNESS PROOFS

This section sketches the proof that the algorithm provides safety
and liveness. The protocol described before guarantees both safety
and liveness when there are at least 2f + 1 honest replicas available.

A.1 Safety
The safety property is defined as non-divergence.

LEMMA A.1 (NON-DIVERGENCE). LetR be a cluster of n replicas
with f Byzantine nodes and with n > 3f. If replicas R, Ry € R are
able to construct quorum certificates qc1 and qcy for value valy and
valy respectively with qc1 version = qC2 version, then valy = vals.

We will first prove this for the simplified case when both quorum
certificates belong to the same round, and we will then prove that
once a quorum certificate can be constructed, no more rounds can
be started.

LemmA A.2. Ifreplicas Ry, Rz € R are able to construct quorum
certificates qci and qcy for value valy and valy respectively with

qc1 version = qC2 version and qcy round = 92 round> then valy =
valy.

Proor. Assume two different replicas Ry and Ry have constructed
a quorum certificate gcq and qcy for value val; and valy respectively
with qc1 version = q¢2 version and qc1 round = 94€2 round- They are
constructed in the same round, so of the n possible votes, at least
n — f replicas have voted on valj, and at least n — f replicas have
voted on valy. Honest replicas will never vote twice in the same
version and round. Therefore, at least n — 2f honest replicas have
voted on val; and n — 2f different honest replicas have voted on
valy. In total, we have (n — 2f) + (n — 2f) + f = 2n — 3f repli-
cas that have voted. We defined n > 3f + 1 before, which gives
2n—3f > 3f+2 > n+1replicas. This is a contradiction, there
need to be at least n + 1 replicas to construct two such certificates
for different values, however, we only have n replicas. So the two
values valy and valy have to be equal. O

LEmMMA A.3. Ifreplicas Ri, Ry € R are able to construct quorum
certificates qc1 and qcy for value valy and valy respectively with

qc1 version = qC2 version, then 4¢1 round = 92 round-

Proor. Assume two different replicas Ry and Ry have constructed
a quorum certificate gcq and qcy for value valy and valy respectively
with gc1 version = 92 version and q¢1 round < 4€2 round- Since gci
is accepted, at least n — f replicas vote on the proposed quorum cer-
tificate and at least n — f replicas voted on valj in round qcy royund-
The fact that n— f replicas voted on the proposed quorum certificate
means that at least n — 2f honest replicas observed n — f votes for
val;. Of those votes, at least n — 2f are coming from honest replicas.
The only way to now construct a quorum certificate gcy for valy is
to start a new round. To start a new round, a replica needs to not
have voted for the proposed quorum certificate gc1, and observe
a different winning value valy. Yet, at least n — 2f honest replicas
observed that at least n — 2f honest replicas think that val; is the
winning value. This leaves only 2f replicas who can prefer another
value valy. By definition we have n > 3f + 1. This means that in the
worst case, f +1 honest replicas observe f +1 honest replicas think-
ing valy is the winning value, together with f Byzantine replicas.
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Value valy has only 2f supporting replicas, which is not enough to
start a proposed quorum certificate. So, at least one replica currently
supporting val; needs to switch votes in a future round. However,
once a replica has voted for a proposed quorum certificate, it will
not change their opinion unless it is convinced that a new valid
round is started. So once n — 2f honest replicas are locked on a
value, by voting on a proposed quorum certificate, it is impossible
that a valid new round can be started. O

A.2 Liveness

The liveness property is defined as termination. When a new value
is proposed, eventually the protocol will end and a valid quorum
certificate is created for a new value. This value is not necessarily
the first proposed value, and it is not even guaranteed that a specific
value ever gets committed as long as other values continue to be
proposed. Safety is always chosen over liveness. When there are
not enough honest replicas online to reach a supermajority, no
consensus can be reached and the protocol will simply block and
wait for more votes. However, all those replicas do not need to be
online at the same time, since the state is replicated to all available
replicas over time, and votes can be verified by all replicas in the
end.

LEmMMA A.4 (TERMINATION). If an honest replica R € R creates a
proposal p for a new value val, eventually the replica will be able to
construct a valid quorum certificate qc.

LeEmma A5. If only a single replica R € R creates a proposal p
for a new value val, eventually the replica will be able to construct a
valid quorum certificate qc.

PRrROOF. As there is only a single proposed value, all honest repli-
cas who observe this will cast their vote for that value. Eventually,
one replica will observe n — f votes for val and a new proposed
quorum certificate will be constructed. Eventually, n — f votes will
be cast to this proposed quorum certificate and a valid quorum
certificate gc is constructed and val is committed. O

LEmMMmA A.6. Ifx replicasRy. x € R create proposals p1. x for values
valy_y, and no Byzantine replicas vote twice in the same round, even-
tually the replica will be able to construct a valid quorum certificate

qc.

Proor. Either a single value reaches a quorum, in which case
the previous lemma holds. Or a split vote occurs and a new round
will be started after n — f votes are observed. All replicas will
base their vote for this new round on the winning value that they
observed from round 0. At least n — f votes are known, and only f
votes are still unknown. As long as not all votes are known to all
voting replicas, the winning value might change. In each new round,
either an unknown vote stays unknown, or it becomes known. In
the former case, then the currently known votes will all be the
same, and a proposed quorum certificate can be started. In the latter
case, one extra vote is known, which might again result in the
system ending up in a split vote, and a new round will be started.
However, this last case can only happen at most f times. After f+1
rounds, all replicas will have voted in round 0, and every replica
will observe the same winning value, and a quorum certificate can
be created. O



LEMMA A.7. Ifx replicas Ry _x € R create proposals p1. x for values
valy._x, eventually the replica will be able to construct a valid quorum
certificate gc.

Proor. If no Byzantine replicas vote twice in the same round,
or only a single value is proposed, the previous two lemmas hold. If
a split vote occurs, a new round will be started after n — f votes are
observed. f of those votes might belong to Byzantine replicas who
can vote for multiple values. As a new round is only started after
n — f votes, a least n — 2f honest votes are observed. No Byzantine
replica can send conflicting votes to any of those n — 2f honest
replicas, as otherwise those replicas will detect this conflicting vote
and exclude the Byzantine replica. If this happens repeatedly, at
most f times, all Byzantine replicas are excluded and the previous
lemma holds. Moreover, no Byzantine replica can continue to vote
on values that are not the winning value. Each replica is only al-
lowed to vote on the winning value or any other value that has at
least support from f + 1 replicas in the previous round. All honest
replicas converge to a single value, even with Byzantine replicas
supporting other values. Because the protocol only looks to the
first round to determine the winning value. In the rounds after that,
the f Byzantine replicas can support a different value, but if they
do, they will be excluded as f < f + 1. This means that after at most
2f + 1 rounds, a proposed quorum certificate can be started, which
will be committed. o
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Anon.

B FORMAL SPECIFICATION OF THE BLS
SIGNATURE SCHEME

Go and G; are two multiplicitive cyclic groups of prime order g.
Ho : {0,1}* — Gg and Hy : {0,1}" — Z4 are hash functions
viewed as random oracles.

(1) Parameters Generation: PGen(k) sets up a bilinear group
(9, Go, G1, Gy, €, 9o, 91) as described by [17]. e is an efficient
non-degenerating bilinear map e : Go X G; — Gy¢. g and g1
are generators of the groups Go and Gy. It outputs params «—
(g, Go, G1, Gy, €, go, g1).-

(2) Key Generation: KGen(params) is a probabilistic algorithm that
take as input the security params, generates sk & Zgq, computes
and sets pk «— gik, and outputs (sk, pk).

(3) Signing: Sign(sk, m) is a deterministic algorithm that takes as
input a secret key sk and a message m. It computes t « Hi(pk),
and outputs o « Ho(m)sk't e G.

(4) Key Aggregation: KAgg({(pki, ri)}.,) is a deterministic algo-
rithm that takes as input a set of public key pk and the multi-
plicity r pairs. It computes t; < H;(pk;), and outputs apk «
12, phi".

(5) (Multi-)Signature Aggregation: Agg(o1, ..., o) is a deterministic
algorithm that takes as input n signatures. It outputs ¢ «
[T, oi.

(6) Verification: Ver(apk, m, o) is a deterministic algorithm that
takes as input aggregated public keys apk € Gi, and the re-

lated message m and signature o € Gy. It outputs e(gi, o) z
e(apk, Ho(m)).
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