IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 9, SEPTEMBER 2021 1

OWebSync: Seamless Synchronization
of Distributed Web Clients

Kristof Jannes, Bert Lagaisse and Wouter Joosen

Abstract—Many enterprise software services are adopting a fully web-based architecture for both internal line-of-business
applications and for online customer-facing applications. Although wireless connections are becoming more ubiquitous and faster,
mobile employees and customers are often offline due to expected or unexpected network disruptions. Nevertheless, continuous
operation of the software is expected. This paper presents OWebSync: a web-based middleware for data synchronization in interactive
groupware with fast resynchronization of offline clients and continuous, interactive synchronization of online clients. To automatically
resolve conflicts, OWebSync implements a fine-grained data synchronization model and leverages state-based Conflict-free Replicated
Data Types. This middleware uses Merkle-trees embedded in the tree-structured data and virtual Merkle-tree levels to achieve the
required interactive performance. Our comparative evaluation with available operation-based and delta-state-based middleware
solutions shows that OWebSync is especially better in operating in and recovering from offline settings and network disruptions. In
addition, OWebSync scales more efficiently over time, as it does not store version vectors or other meta-data for all past clients.

Index Terms—CRDTSs, Groupware, Web browsers, Eventual Consistency

1 INTRODUCTION

EB applications are the default architecture for many
W online software services, both for internal line-of-
business applications such as Customer Relationship Man-
agement (CRM), billing, and Human Resources (HR); as
well as for customer-facing services. Browser-based service
delivery fully abstracts the heterogeneity of the clients, solv-
ing the deployment and maintenance problems that come
with native applications. Nevertheless, native applications
are still used when rich and highly interactive GUIs are
required, or when applications must function offline for a
long time. The former reason is disappearing as HTML5 and
JavaScript are becoming more powerful. The latter reason
should be disappearing too with the arrival of WiFi, 4G and
5G ubiquitous wireless networks. In reality, connectivity is
often missing for minutes to hours. Mobile employees can
be working in cellars or tunnels, and customers sometimes
want to use a web-based service on an airplane.

Interactive groupware applications, such as collaborative
web applications with concurrent edits on shared data,
should offer prompt data synchronization with interactive
performance when online. We use the term synchronization
here to describe the process of keeping data of multiple
replicas eventually consistent by means of replication.

This paper focuses on prompt and seamless synchroniza-
tion when clients were offline due to network disruptions,
while maintaining interactive synchronization in the online
setting. The research of Nielsen on usability engineering [1]
states that remote interactions should take only 1-2 seconds
to keep the user experience seamless and interactive. Users
are annoyed after a 5 second waiting period and 10 seconds
is the absolute maximum before users leave the application.

Several client-side frameworks for synchronization of
semi-structured data exist. They support fine-grained and

o The authors are with imec-DistriNet, KU Leuven, 3001 Leuven, Belgium.
E-mail: {kristof.jannes, bert.lagaisse, wouter.joosen }@cs.kuleuven.be

(© 2021 IEEE. https://doi.org/10.1109/TPDS.2021.3066276

concurrent updates on local copies of shared data and op-
erate conflict-free in online and offline situations. However,
there is no generic, fully web-based middleware solution
that can be used by interactive web applications to:

1) achieve continuous and interactive synchronization
for online clients and prompt resynchronization for
offline clients,

2) scale to tens of online clients that concurrently edit
a document with interactive performance,

3) tolerate hundreds of clients over time without in-
flating the data with versioning metadata.

State-of-the-art data synchronization frameworks are
either operation-based, state-based or delta-state-based.
Operation-based approaches distribute the updates as op-
erations to all replicas. Operational Transformation, as used
in Google Docs [2], is a popular operation-based technique
for real-time synchronization in web applications, but it is
not resilient against message loss or out-of-order messages.
It requires a central server transforming the operations for
other clients to deal with concurrent changes. Commutative
Replicated Data Types [3], [4], as used in SwiftCloud [5], [6],
Yjs [7], [8], [9] and Automerge [10], [11], are also operation-
based. Again, updates must be propagated, as operations,
to all clients using a reliable, exactly-once, message channel.
However, no transformation is needed because concurrent
operations are commutative. State-based Convergent Repli-
cated Data Types [4] are resilient against message loss, but
have often been considered as problematic since the full
state has to be transferred between all replicas each time.
However, it is used for background synchronization be-
tween data centers, e.g. in Riak [12]. Merkle Search Trees [13]
are proposed as a solution to the high bandwidth usage. It
uses Merkle-trees [14] to replicate a basic key-value store
like in Dynamo [15]. The solution works in large systems
with low rates of updates for asynchronous background

https://doi.org/10.1109/TPDS.2021.3066276

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 9, SEPTEMBER 2021 2

synchronization between backend servers; it is not suited
for interactive groupware. Delta-state-based Conflict-free
Replicated Data Types [16], as used in Legion [17], [18],
need less of the message channel than the operation-based
approaches. However, they use vector clocks to calculate
delta-updates, which require one entry per writing client per
object in the server-side metadata. This does not integrate
well with the dynamic nature of the web, where it is often
uncertain if a client will ever connect to a server again.

In this paper, we present OWebSync, a generic web mid-
dleware for data synchronization in browser-based applica-
tions and interactive groupware. It supports offline usage
with fast resynchronization, as well as continuous and in-
teractive synchronization between online clients. OWebSync
provides a generic, reusable data type, based on JSON [19],
that web application developers can leverage to model their
application data. One can nest several map structures into
each other to build a complex tree-structured data model.
These data types support fine-grained and conflict-free syn-
chronization by leveraging state-based Conflict-free Repli-
cated Data Types (CRDTs). OWebSync solves the scalability
issue that comes with operation-based approaches, where
server-side metadata will grow linearly over time with the
number of clients present in the system at some point.
It reduces the required bandwidth by combining several
tactics such as Merkle-trees embedded in the tree-structured
data, virtual Merkle-tree levels, and message batching. As
such, OWebSync can achieve the interactive performance of
operation-based approaches, while maintaining the inherent
robustness of state-based approaches.

This paper is structured as follows. Section 2 provides
two motivating case studies and provides background on
synchronization mechanisms such as CRDTs. Section 3 de-
scribes the underlying data model based on CRDTs and
Merkle-trees. Section 4 presents the deployment and syn-
chronization architecture together with two performance
optimization tactics. Section 5 compares and evaluates per-
formance in online and offline situations using OWebSync
and other state-of-the-art synchronization frameworks. We
discuss related work in Section 6 and then we conclude.

2 MOTIVATION AND BACKGROUND

This section explains the motivation of the goal and ap-
proach of OWebSync. First, we present two case stud-
ies of online software services for mobile employees and
customers that often encounter offline settings due to ex-
pected or unexpected network disruptions. We then provide
background information on Operational Transformation,
Conflict-free Replicated Data Types and Merkle-trees.

2.1 Case studies

The motivation and requirements emerged from two case
studies from our applied research projects with industry,
that have also been used for the evaluation of the middle-
ware. The first case study is an online software service from
eWorkforce, a company that provides technicians to install
network devices for different telecom operators at their cus-
tomers’ premises. The second company, eDesigners, offers a
web-based design environment for graphical templates that
are applied to mass customer communication.

2.1.1 eWorkforce

eWorkforce has two kinds of employees that use the online
software service: the help desk operators at the office and
the technicians on the road. The help desk operators accept
customer calls, plan technical intervention jobs and assign
them to a technician. The technicians can check their work
plan on a mobile device and go from customer to customer.
They want to see the details of their next job wherever they
are and must be able to indicate which materials they used
for a job. Since they are always on the road, a stable internet
connection is not always available. Moreover, they often
work in offline mode when they work in basements to install
hardware. Writing off all used materials is crucial for correct
billing and inventory afterwards.

This case study requires support for long term offline
usage, with quick synchronization when coming online,
especially for last-minute changes to the work plan of the
technicians. The help desk software must be operational at
all times, even without connection to the central database, as
customers can call for support and schedule interventions.

2.1.2 eDesigners

The company eDesigners offers a customer-facing multi-
tenant web application to create, edit and apply graphical
templates for mass communication based on the customer’s
company style. Templates can be edited by multiple users at
the same time, even when offline. When two users edit the
same document, a conflict occurs, and the versions need to
be merged. Edits that are independent of each other should
both be applied to the template, e.g. one edit changes the
color of an object, another edit changes the size. When two
users edit the same property of the same object, only one
value can be saved. This should be resolved automatically
as to not interrupt the user.

This case study requires that the application is always
available, updates must always be possible, even offline
when working on an airplane. When coming back online,
the updates should be synchronized promptly without re-
quiring the user or the application to manually resolve
conflicts. When working online, the performance should be
interactive, especially when two users are working on the
same template next to each other.

2.2 Background

The previous section described the overall goal. In this
section, we discuss the advantages and problems of state-of-
the-art techniques such as Operational Transformation and
Conlflict-free Replicated Data Types (CRDTs).

2.2.1 Operational Transformation

OT [20] is a technique that is often used to synchronize
concurrent edits on a shared document. It works by sending
the operations to the other replicas. The operations are
not necessarily commutative, which means they cannot be
applied immediately on other replicas. A concurrent edit
might conflict with another operation. Therefore, a central
server is used to transform the operations for the different
replicas so that the resulting operations maintain the origi-
nal semantics. The problem is that the transformation of the
incoming operations of other clients on their local state can

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 9, SEPTEMBER 2021 3

get very complex. Messages can also get lost or can arrive in
the wrong order. Hence, OT is not resilient against message
loss and long-lasting offline situations [21].

2.2.2 Conflict-free Replicated Data Types

CRDTs [4], [22] are data structures designed for replica-
tion that guarantee eventual consistency without explicit
coordination with other replicas. Conflict-free means that
conflicts are resolved automatically in a systematic and
deterministic way, such that the application or user does not
have to deal with conflicts manually. There are two kinds of
CRDTs: operation-based or Commutative Replicated Data
Types (CmRDT) and state-based or Convergent Replicated
Data Types (CvRDT).

Commutative Replicated Data Types. CmRDTs [22] make
use of operations to reach consistency, just like OT. Concur-
rent operations in CmRDTs must be commutative and can
be applied in any order. This way, there is no central server
necessary to apply a transformation on the operations. As
with OT, CmRDTs need a reliable message broadcast chan-
nel so that every message reaches every replica exactly-once.
Causally ordered delivery is required in some cases.

Convergent Replicated Data Types. CvRDTs [22] are based
on the state of the data type. Updates are propagated to
other replicas by sending the whole state and merging the
two CvRDTs. For this merge operation, there is a monotonic
join semi-lattice defined. This means that there is a partial
order defined over the possible states and a least-upper-
bound operation between two states. The least-upper-bound
is the smallest state that is larger or equal to both states
according to the partial order. To merge two states, the
least-upper-bound is computed, which will be the new state.
CvRDTs require little from the message channel: messages
can get lost or arrive out-of-order without a problem since
the whole state is always sent. However, this state can get
large, and needs to be communicated every time.

Delta-state CvRDTs. §-CvRDTs [23], [24], [25] are a variant
of state-based CRDTs with the advantage that in some
cases only part of the state (a delta) needs to be sent for
correct synchronization. When a client performs an update,
a new delta is generated which reflects the update. Each
client keeps a list of deltas and remembers which clients
have already acknowledged a delta. As soon as all clients
have acknowledged a delta, it can be discarded because the
update is now reflected in the state of all clients. If a client
was offline and has missed too many deltas, then the full
state must be sent, just like with normal state-based CRDTs.

0-CRDTs have some problems when using them in web
applications. Browser-based clients come and go with a
large churn rate and it is often unclear if a client will
come back online in the future (e.g. browser cache cleared).
Keeping extra metadata for all those clients, to be able to
synchronize only the required deltas, can result in a large
storage or memory overhead to keep track of them at the
server. One can always discard the metadata for clients that
were offline and send the full state if they do come back
online eventually. But this is of course not efficient when the
state is large and the client already had most of the updates.

A variant of 6-CRDTs, called A-CRDTs [16], is proposed
as a solution to this problem. A-CRDTs are comparable to
0-CRDTs, but instead of keeping track of the clients at the

server, it includes extra metadata about concurrent versions
of all clients in the data model, as vector clocks, to calculate
the deltas dynamically. This solves the problem of keeping
track of the deltas for clients at the server, but it still needs
client identifiers and version numbers inside the vector
clocks for each object, and each client that made a change.
Another approach to optimize §-CRDTs is using join
decompositions [26], [27]. This approach does not extend
CRDTs with additional metadata that needs to be garbage
collected. Instead, it can efficiently calculate a minimal delta
to synchronize. While this improves the network usage
compared to normal §-CRDTs, it still requires clients to keep
track of their neighbors. When there is no such data avail-
able, e.g. after a network partition, it needs to fall back to a
state-based approach. However, it only requires sending the
full state in a single direction, compared to bidirectionally in
normal state-based CRDTs. A digest-driven approach is also
supported, which will send a smaller digest of the actual
state. However, for many CRDTs, such digest does not exist
and for large, nested data, this digest would still be large.

2.3 Principles

We now introduce two state-based CRDTs and Merkle-
Trees. We will use these as building blocks in the next section
for our data model.

2.3.1 LWWRegister

A Last-Write-Wins Register (LWWRegister) [4] is a CvRDT
that contains exactly one value (string, number or boolean)
together with a timestamp of the last change. This times-
tamp will be used to merge another replica of this LWWReg-
ister. The value associated with the highest timestamp is
kept, while the other value is discarded. This conflict resolu-
tion strategy boils down to a simple last-write-wins strategy.

2.3.2 ORSet

An Observed-Removed Set (ORSet), as described by
Shapiro et al. [4], [28], is a set CvRDT. Internally, the ORSet
contains two sets: the observed set and the removed set.
When an item is added to the set, it is added to the observed
set together with a unique tag. When that item is removed,
the associated tag is added to the removed set, and the item
itself is removed from the observed set. This allows an item
to be removed and added multiple times. All items present
in the observed set, but not in the removed set are currently
present in the set. The conflict resolution of the ORSet boils
down to an add-wins resolution, i.e. a concurrent add and
remove operation will result in the item being present in the
set since each add will get a new identifier. To merge a local
replica of an ORSet with another replica, the union of the
respective observed and removed set is taken, and removed
items are removed from the observed set.

2.3.3 Merkle-trees

Merkle-trees [14] or hash-trees are used to quickly compare
two large data structures. Merkle-trees are trees where each
node contains a hash. The values of the leaf nodes are
hashed and each hash in an internal node is the hash of the
hashes of all its immediate children. Two data structures can
now be compared starting from the two top-level hashes.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 9, SEPTEMBER 2021 4

If the top-level hashes match, the data structures are equal.
Otherwise, the tree can be descended using the mismatching
hashes to find the mismatching items. Sub-trees which are
already equal will have equal hashes at their top nodes, so
they do not need further verification.

3 THE OWEBSYNC DATA MODEL

This section describes the data model of OWebSync that will
be used for synchronization. The data model is a CvRDT for
the efficient replication of JSON data structures and applies
Merkle-trees internally to quickly find data changes.

3.1 Approach

OWebSync uses state-based CRDTs, which require little
from the message channel compared to operation-based
approaches. No state about other clients or client-based
versioning metadata needs to be stored, unlike delta-state
approaches. And even after long offline periods, the missed
updates can be computed and synchronized seamlessly. To
limit the overhead of full state exchanges between clients
and server, we adopt Merkle-trees in the data structure to
find the items that need to be synchronized efficiently. The
CvRDT consist of two types: a LIWWRegister and an ORMap
extended with a Merkle-tree. The LIWWRegister is used to
store values in the leaves of the tree, and is implemented as
described by Shapiro et al. [4]. The ORMap is a recursive
data structure that represents a map containing a mapping
from strings to other ORMaps or LWWRegisters.

3.2 Observed-Removed Map

The ORMap is implemented starting from a state-based
Observed-Removed Set [28]. The items in the observed set
are key-value pairs, where a key is a string, and the value is
a reference to another CvRDT. Concurrent edits to different
keys can be made without a problem. Edits to the same
key and tag will be delegated to the child CRDT: either
another ORMap or a LWWRegister. If two different replicas
add the same key, they will get a different tag. This situation
is difficult to resolve, and we opted to merge the two values,
keeping only the lexicographical greatest tag. As a result, a
single replica of an ORMap has at most one value for a key.

We made two extensions to this basic ORMap to make
state-based synchronization more efficient. First, we ex-
tended this data structure with a Merkle-tree using the
object’s logical tree-structure. This means that we keep an
extra hash for all items in the observed set. When the child
is a LWWRegister, the hash is the hash of the value of that
register. When the child is another ORMap, the hash of
it is the combined hash of the hashes of all its children,
lexicographically ordered on the unique tags. This way,
when one value in a register changes, all the hashes of the
parents will also change, so that a change can be detected by
only comparing the top-level hash. Second, we do not store
a child CRDT inside the observed set, instead we only store
the tag, key and hash of that CRDT. The child CRDTs can be
stored elsewhere using its path as a unique key.

Alg. 1 and 2 show the specification of the OWebSync
ORMap with our two extensions. It supports several oper-
ations to query, update and merge this data structure. The

1. KV > Key-value store
2: Po..pn > Array representation of a path in the tree
3: state:

4; O+« 0 > Observed set with tuples (key, tag, hash)

R+ 0
PATH

5 > Removed set with tags
6

7: query: GET (po..pn)

8

9

> The path of this ORMap

if 3o € O : 0.key = po then
: ¢+ KV.GET(PATH + o.key)
10: return c.GET(p1..pn)
11: return L
12: update: SET (po..pn, value)
13: if 30 € O : 0.key = po then

14: ¢+ KV.GET(PATH + o.key)

15: ¢.SET(p1..pn, value)

16: o.hash < c.hash

17 else

18: if LEN(po..prn) = 1 A IS_PRIMITIVE(value) then
19: ¢ < NEW_LWWREGISTER(PATH + po)

20: else

21: ¢ < NEW_ORMAP(PATH + po)

22: ¢.SET(p1..pn, value)

23: O + O U{(po, UNIQUE(), c.hash)}

24: update: REMOVE (po..pn)
25: if 3o € O : 0.key = po then

26: if LEN(po..pn) = 1 then

27: O+ O\ {o}

28: R + RU{o.tag}

29: else

30: ¢ < KV.GET(PATH + o.key)
31: ¢.REMOVE(p1..pn)

32: o.hash < c.hash

33: update: REMOVE_WITH_TAG (po..pn, tag)
34: if LEN(po..pr) = 0 then

35: if 3o € O : o.tag = tag then

36: O+ O\ {o}

37: R + RU{o.tag}

38: else if o € O : 0.key = po then

39: ¢ < KV.GET(PATH + o.key)

40: ¢.REMOVE_WITH_TAG(p1..pn, tag)
41: o.hash < c.hash

42: (Continues in Alg. 2)

Alg. 1. Simplified implementation of the state, query- and update opera-
tions of an ORMap with a Merkle-tree for synchronization.

GET operation is equal to the one in a basic ORMap. There is
always at most one single object in the observed set with a
specific key. The SET and REMOVE operation are also similar,
but require updating the hash to keep the Merkle-tree up-
to-date. The REMOVE_WITH_TAG operation removes a single
element, based on the tag instead of the key.

The MERGE operation is modified to make use of the
Merkle-tree. It accepts a path in the tree, and the ORMap
of that path from the remote replica. The received ORMap
only contains the metadata of its children, and not the actual
child CRDTs. The MERGE will detect which branches of the
tree are changed, and returns all paths of those branches. In
a next step, the synchronization protocol will use those re-

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 9, SEPTEMBER 2021 5

43: merge: MERGE (pg..pn, remote)

44: N« > paths that need synchronization
45: if LEN(po..pr) = 0 then

46: R < RUremote.R

47 O+ {o€0O:o.tag & R}

48: for all ro € remote.O : ro.tag ¢ R do

49: if 3o € O : 0.key = ro.key then

50: if o.tag # ro.tag then

51: if ro.tag > o.tag then

52: o.tag < ro.tag

53: else

54: N« NU{PATH}

55: if o.hash # ro.hash then

56: N + NU{PATH + o.key}

57: else

58: N < NU{PATH + ro.key}

59: else

60: if 3o € O : 0.key = po then

61: ¢+ KV.GET(PATH + o.key)

62: N < N U c.MERGE(p1..pn, remote)

63: o.hash < c.hash

64: else

65: if LEN(po..pn) =1

66: A TYPEOF(remote) = LWWRegister then
67: ¢ <~ NEW_LWWREGISTER(PATH + po)
68: else

69: ¢ < NEW_ORMAP(PATH + po)

70: N < N U c.MERGE(p1..pn, remote)

71: O <+ OU{(po,c.tag,c.hash)}

72: return N

Alg. 2. Simplified implementation of the merge operations of an ORMap
with a Merkle-tree for synchronization.

turned paths to descend in the tree and continue the MERGE
in these branches. Only the returned paths are merged
further, the other branches of the tree do not need further
processing. By splitting up this operation per level in the
tree, only the updated registers and parent ORMaps need
to be sent over the network, improving both the bandwidth
usage as well as saving computation power as not all CRDTs
need to be merged. We explain this synchronization protocol
in more detail in Section 4. We use a key-value store to store
the CRDTs, called KV in the specification.

Proof sketch. A state-based object is a CvRDT when the
states of that object forms a monotonic join semilattice. This
means that there is partial order defined over the states,
and a least upper bound (LUB) operation on two states
which results in the smallest state that is larger or equal
to the two given states according to the partial order [4],
[22]. The partial order of the modified ORMap defined here
is similar to the ORSet [28], which contains two grow-only
sets. As an optimization, removed items are only present
in the removed-set and are removed from the observed-set,
however, conceptually they are still part of the observed-
set when determining the partial order. The LUB operation,
equal to the MERGE operation in Alg. 2, takes the union of
the respective observed- and removed-set. Again using the
optimization that removed items are not actually stored in

{

"drawingl": {
"object36": {

"fill": "#£00",
"height": 50,
"left": 50,
"top": 100,
"type": "rect",
"width": 80

}

Fig. 1. JSON data structure of the eDesigners case study.

— drawingl.object36:
{

tag: 0a2f7bc2-129f-11e9-abl4-d663bd873d93,
hash: 7319eae53558516daafacl9183f2ee34,
observed: [
{
key: "top",
tag: 23cl25%9a-129f-11e9-abl4-d663bd873d93,
hash: 65bddlb610£629e54d05459c00523a2b
}!
{
key: "left",
tag: Oeac2a3a-546f-11e9-8647-d663bd873d93,
hash: 67507876941285085484984080£5951e
}!
]!
removed: []

}
- drawingl.object36.top:

{
tag: 23cl259a-129f-11e9-abl4-d663bd873d93,
hash: 65bddlb610£629e54d05459¢c00523a2b,
timestamp: 789778800000,
value: "100"

}

Fig. 2. Internal structure of two key-values that represent object36
and the property top of the JSON data structure in Fig. 1. We use a
pseudo-JSON notation here, however, in practise these two key-values
are stored in a binary format in a key-value store.

the observed-set anymore. Two complications added here
are the key and the hash. When a key is present in both
ORMaps, with a different tag, the LUB operation will only
keep the largest tag, and merge the two values according
to the rules of the child CRDT. The other tag is consid-
ered removed. When the hash differs, the two values are
merged according to the rules of the child CRDT, after
which the hashes will become equal. A new item in the
remote observed-set is not immediately added to the local
observed-set, instead the path of that branch is returned.
Later, MERGE will be called with the child, and the item is
added to the observed-set. This addition is delayed to make
it possible to infer the type of the child CRDT.

Example. As an example, we illustrate the conceptual rep-
resentation of an application data object in the eDesigners
case study, as well as the resulting underlying CRDTs in the
OWebSync data model. Fig. 1 present a JSON data structure
of a drawing with one rectangle object. Fig. 2 represents
the internal structure of two CRDTs in that JSON structure.
First, the key under which the CRDT is stored in a key-value
store is listed, then the internal value of the CRDT. There is
an ORMap stored in the key-value store for key "" (the root
of the tree), drawingl and drawingl.object36. Only

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 9, SEPTEMBER 2021 6

drawingl.object36 is shown in the figure. For all the
leaf-values, there is a LWWRegister stored under the respec-
tive keys, for conciseness, only drawingl.object36.top
is shown. The application developer only needs to know
about the conceptual JSON representation, the middleware
will automatically translate this data model and its oper-
ations to the underlying CRDTs and maintain the Merkle-
tree and the internal CRDT structure. When a user modifies
the top property, its hash and the hash of all the parents
will change. The MERGE procedure will be called with
Do-.prn, empty and return the branches that have changed:
{drawingl}. MERGE will now again be called with py =
"drawingl" and the respective remote CRDT, and will
return {drawingl.object36}. This process will continue
until it reaches a leaf value.

3.3 Considerations and discussion

The data model is best suited for semi-structured data that
is produced and edited by concurrent users. Any data that
can be modeled in a tree-like structure such as JSON and
that can tolerate eventual consistency, can use OWebSync for
the synchronization. Examples are the data items in the case
studies: graphical templates, a set of tasks or used materials
for a task. This data model is less suited for applications
such as online banking which requires constraints on the
data such as: “your balance can never be less than zero”.
Text-editing is also not a great fit, because there is not much
structure in the data. If you would see text as a list of
characters, it would result in a tree with one top-level node
and one level with many child nodes: the characters. There
is no benefit in using a Merkle-tree here.

Developers have two choices. They can either pass a
JSON object, and every JSON map will be mapped to an
ORMap, and the leaf values to LWWRegisters. Or they can
stringify an object, so that the full object is mapped to a
LWWRegister. As a result, changes will be atomic.

The timestamps in the LIWWRegisters are provided by
the clients and we do not consider malicious clients. We
also assume loosely synchronized clocks. If this assumption
is not met, an accidental fault resulting in a clock several
years in the future, might make edits to this LIWWRegister
impossible. Users can resolve this manually by removing
that register and creating a new one with the same key in
the ORMap, loosing concurrent changes. We do not consider
this an important drawback, as most personal devices these
days automatically synchronize their time with the internet.

In the current data model, the ORMap keeps the tags of
all removed children eternally, so-called tombstones. As a
result, the size of an ORMap can accumulate over time and
performance will degrade. With a modest usage of deletion,
this will not be a problem. Even when you remove a large
sub-tree of several levels deep, only the tag of its root is
kept in the parent. One strategy to clean up tombstones
could be to remove those older than e.g. one month. We then
expect that a client will not be offline for more than a month
while performing concurrent edits. This can be enforced by
logging out the user after a month of no usage. Delta-state-
based CRDTs can avoid tombstones by encoding the causal
context as a compact version vector. However, this version
vector grows in size with the number of clients that make

changes to this ORMap. We opted for tombstones, which can
be garbage collected after a sufficiently long time, because
we target a dynamic environment such as the web. Web
clients come and go, without long term presence.

Another kind of conflict occurs when two different types
of CRDTs are assigned concurrently at the same position
in the JSON structure. In this case, the merge-operation of
the defined CRDTs cannot be used to resolve the conflict.
This is solved by posing an order on the possible CRDTs,
e.g. LWWRegister < ORMap. This means that when such a
conflict occurs, the ORMap is selected as actual value, while
the LIWWRegister is discarded.

Another conflict is a concurrent remove and update of a
child CRDT. The CRDT proposed here maintains a remove-
wins semantic. This means that updates done to children are
discarded when the parent is removed concurrently.

Beside primitive values and maps, the JSON specifica-
tion also contains ordered lists. This is currently not sup-
ported by OWebSync. We focused on the initial key data
structures: last-write-wins registers and maps. Keeping a
total numbered order, as lists do, is rarely needed. Unique
IDs in a map are better suited in a distributed setting. In
the case studies, the ordering of items in a set was based
on application-specific properties such as dates, times or
other values, instead of an auto-incremented number of a
list. However, CvRDTs for ordered lists exist [4], [29] and
could be added in future work. Adding new kinds of CRDTs
to the data model is straight-forward. An existing CvRDT
can be used as is, except for an extra hash to be part of the
Merkle-tree. For a CRDT that represents a leaf value (e.g. a
Multi-Value Register [4]), the hash is simply the hash of that
value. For CRDTs that can contain other values, the hash
must combine the hashes of all the children.

4 ARCHITECTURE AND SYNCHRONIZATION

This section describes the deployment and execution archi-
tecture of OWebSync as well as the synchronization pro-
tocol. This middleware architecture is key to support the
data- and synchronization model described in the previous
section. We also elaborate on a set of key performance
optimization tactics to achieve continuous, prompt synchro-
nization for online interactive clients.

4.1 Overall architecture

The middleware architecture is depicted in Fig. 3 and
consists of a client and a server subsystem. The client-
tier middleware API is fully implemented in JavaScript
and runs completely in the browser, without add-ins or
plugins. The server is a light-weight process, which listens
to incoming web requests. The server is only responsible
for data synchronization, it does not run application logic.
Both client and server have a key-value store to persist
data, and they communicate using only web-based HTTP
traffic and WebSockets [30]. All communication messages
are sent and received inside the client and server subsystems
using asynchronous workers. The tags in the ORMap are
UUIDs [31] and we use the MD5 [32] algorithm for hashing.
We first elaborate on the client-tier subsystem with the
public middleware API for applications, and then describe
the client-server synchronization protocol.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 9, SEPTEMBER 2021 7

vl

i
Browser Server
Main thread Worker thread
<HTML5>§
Application
QAPI SYNC
s> sffO <Is> SO <s> s
Middleware {-On{ Worker p-OH-ff Server
Q Q
<<component>g <. component>g
L IndexedDB K/V-store

Fig. 3. Overall architecture of the OWebSync middleware

4.2 Client-tier middleware and API

The public programming API of the middleware is located
at the client-tier, and web applications are developed as
client-side JavaScript applications that use this API:

e GET (path): returns a JavaScript object or primitive
value for a given path.

e LISTEN(path, callback):similarto GET,butev-
ery time the value changes, the callback is executed.

e SET (path, value):set or update a value.

e REMOVE (path): remove a value or branch.

The OWebSync middleware is loaded as a JavaScript library
in the client and the middleware is then available in the
global scope of the web page. One can then load and edit
data using typical JavaScript paths. An example from the
eDesigners case study:

let dl =
dl.object36.color =
OWebSync.set ("drawingl",

await OWebSync.get ("drawingl")
"#£00"
dl)

The object at "drawingl" is fetched from disc and
is represented as a JavaScript object in memory. If there
would be other drawings (e.g. drawing?), these will not
be loaded. The access to "dl.object36.color" is just
a plain JavaScript object access and does not involve OWeb-
Sync. For performance reasons, it is best to always scope
to the smallest possible object from the database, in this
example that would be:

OWebSync.set ("drawingl.object36.coloxr", "#£f00")

4.3 Synchronization protocol

The synchronization protocol between client and server
consists of three key messages that the client can send to
the server and vice versa:

e GET (path, hash): the receiver returns the CRDT
at a given path if the hash is different from its own
CRDT at the given path.

e PUSH (path, CRDT): the sender sends the CRDT
data structure at a given path and the receiver will
merge it at the given path.

e REMOVE (path, tag): removes the CRDT at a
given path if the unique identifier of the value is
matching the given tag. As such, a newer value with
a different tag will not be removed.

X

Client 1: [GET "drawingl"] Server

2: [PUSH "drawingl"]

3: [PUSH "drawingl.object36"]

4: [PUSH "drawingl.object36.color"]

5:]

Fig. 4. Synchronization protocol when another client made an update to
the color. A GET message only sends the path and hash value, a PUSH
message also sends the respective CRDT. E.g. for message 3, the first
CRDT in Figure 2 is sent.

1. KV > Key-value store
2: sync: SYNC (msgs)
3: resp < [1]
4: for all msg € msgs do
5: if msg = GET(path, hash) then
6: ¢ < KV.GET(path)
7: if c.hash # hash then
8: resp.APPEND(PUSH(path, c))
9: else if msg = PUSH(path, crdt) then
10: ¢+ KV.GET("")
11: paths < ¢.MERGE(path.SPLIT(" . "), crdt)
12: > Procedure from Alg. 2
13: for all p € paths do
14: if KV.HAS(p) then
15: ¢ < KV.GET(p)
16: resp.APPEND(PUSH(p, ¢))
17: else
18: resp.APPEND(GET(p, L))
19: else if msg = REMOVE (path, tag) then
20: ¢ KV.GET("")
21: ¢.REMOVE_WITH_TAG(path.SPLIT(" . "), tag)
22: return resp > Procedure from Alg. 1

Alg. 3. Specification of the synchronization protocol, using the ORMap
specified in Section 3. Some details are abstracted for conciseness.

The protocol, depicted in Alg. 3, is initiated by a client,
which will traverse the Merkle-tree of the CRDTs. The
synchronization starts with the CRDT in the root of the
tree. The client will send a GET message to the server with
the given path and hash value of the CRDT. If the server
concludes that the hash of the path matches the client’s
hash, the synchronization stops. An empty message is send
to signal this to the other side. All data is consistent at that
time. If the hash does not match, the server returns a PUSH
message with the CRDT that is located at the path requested
by the client. This does not include the child CRDTs, only
the metadata (key, tag, and hash) of the immediate children.
The client must merge the new CRDT with the CRDT at
its requested path. The specification is listed in Alg. 2. The
MERGE operation returns a set with all changed paths. Those
paths are the paths of the conflicting CRDTs that still need
to be synchronized. The client will then PUSH the CRDTs
belonging to those paths to the server. The server then needs
to merge those CRDTs. If a child does not yet exists, an

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 9, SEPTEMBER 2021 8

empty child is created and a GET message is sent. The pro-
cess continues by traversing the tree and exchanging PUSH
and GET messages until the leaves of the tree are reached.
The CRDT in this leaf is a register and can be merged
immediately. All parents of this leaf are now updated such
that finally the top-level hash of client and server match. If
the top-level hashes do not match, other updates have been
done in the meantime, and the process is repeated. Per PUSH
message that is sent, the process descends one level in the
Merkle-tree. The length of the synchronization protocol is
therefore limited to the maximum depth of the Merkle-tree.

The third type of message, REMOVE, is not strictly nec-
essary, but can improve the bandwidth requirements. If
during this synchronization process between a client and
the server, a child is removed at one side, but not at the
other side, a REMOVE message is sent to the other party so
that it can remove that value and add the tag to the removed
set of the correct ORMap. Alternatively, this additional third
message type of REMOVE could be avoided if a PUSH of
the parent would be sent instead. However, the push of a
parent with many children would cause a serious overhead
compared to a REMOVE message with only a path and a tag.

Fig. 4 shows an example of the eDesigners case study
where the client changed the color of an object. If the client
had made multiple changes, e.g. he also changed the height,
the start of the synchronization protocol would be the same,
except that the height will also be included in message four.

4.4 Performance optimization tactics

The main optimization tactic to achieve prompt synchro-
nization for interactive groupware is the reduction of net-
work traffic by the Merkle-trees. However, there are ad-
ditional tactics needed to further improve synchronization
time. To reduce the overhead of the synchronization proto-
col between the many clients and the server, two optimiza-
tion tactics are applied by both the client and the server.

4.4.1 Virtual Merkle-tree levels

When the number of child values in an ORMap increases, all
the metadata for those children (key, tag, and hash) needs
to be sent each time during the synchronization to check
for changes. This leads to very high network usage since
it cannot make use of the Merkle-tree efficiently. To solve
this problem, we introduced extra, virtual, levels in the
Merkle-tree. Whenever an ORMap needs to be transmitted
which contains many children (i.e. hundreds), instead an
extra Merkle-tree level is sent. This extra level combines
the many children in groups of e.g. 10. This number can be
adapted to the total number of children. As a result, 10 times
fewer hashes will be sent, combined with the key-ranges the
hashes belong to. The other party can verify the hashes and
determine which ones are changed and then push the 10
children for which the combined hash did not match. This
improvement leads to a slight delay in synchronization time
since it adds one extra round-trip, but when only a small
part of the children is updated, it uses much less bandwidth
and reduces the computation time.

4.4.2 Message batching

In the basic protocol, all messages are sent to the other
party as soon as a mismatch of a hash in the Merkle-

tree is detected. This leads to lots of small messages (GET,
PUSH, and REMOVE) being sent out, and as a consequence,
many messages are coming in while still doing the first
synchronization. This results in many duplicated messages
and doing a lot of duplicated work on sub-trees since the
top-level hash will only be up-to-date when the bottom of
the tree is synchronized. To solve this problem, all messages
are grouped in a list and are sent out in batch after a
full pass of a whole level of the tree has occurred. At the
other side, the messages are processed concurrently, and
all resulting messages are again grouped in a list, and are
only sent out after the incoming batch was fully iterated.
If no further messages are resulting from the processing
of a batch, an empty list is sent to the other party to end
the synchronization. As a result, fewer messages are sent
between a client and server, and only one synchronization
round per client is occurring at the same time, resulting in
no duplicated messages and work on sub-trees.

5 PERFORMANCE EVALUATION

The performance evaluation will focus on situations where
all clients are continuously online, as well as on situations
where the network is interrupted. For online situations, we
are especially interested in the time it takes to distribute and
apply an update to all other clients that are editing the same
data. For the offline situation, we are especially interested in
the time it takes for all clients to get back in sync with each
other after the network disruption, and in the time it takes
to restore normal interactive performance.

The performance evaluation in this paper is performed
using the eDesigners case study, as this scenario has the
largest set of shared data and objects between users. The
eWorkforce case study has fewer shared data with fewer
concurrent updates as technicians typically work on their
own data island and the data contains fewer objects with
less frequent changes. To compare performance, we im-
plemented the case study 5 times on 5 representative
JavaScript technologies for web-based data synchronization:
our OWebSync platform, which uses state-based CRDTs
with Merkle-trees, Yjs [9] and Automerge [11] which use
operation-based CRDTs, and ShareDB [33] which makes use
of OT. We used Legion [17] for testing delta-state CRDTs.
Both Yjs (2698 GitHub stars) and ShareDB (3768 GitHub
stars) are widely used open source technologies available
on GitHub. Automerge is the implementation of the JSON
data type of Kleppmann and Beresford [34]. Legion is the
implementation of A-CRDTs of van der Linde [16], [17].
We did not evaluate Google Docs, which uses OT, as it is
text-based, and can not be used to synchronize the J[SON-
documents used in the test. Instead, we opted for ShareDB.
We use Fabric.js [35] for the graphical interface.

Test setup. Both the clients and the server are deployed as
separate Docker containers on a set of VMs in the Azure [36]
public cloud. A VM has 4 vCPU cores and 8 GB of RAM
(Standard A4 v2) and holds up to 3 client containers. A client
container contains a browser that loads the client-side mid-
dleware from the server. The middleware server is deployed
on a separate VM (Standard F4s v2). The monitoring server
that captures all performance data is deployed on a separate
VM. VMs in Azure have their clocks synchronized with

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 9, SEPTEMBER 2021 9

the host machine, which is synchronized with the internal
Microsoft time servers. The Linux tc tool [37] is used to
artificially increase the latency between the containers to
an average of 60 ms with 10 ms jitter, which resembles the
latency of a 4G network in the US [38].

Our evaluation contains three benchmarks. The first
benchmark represents the continuous online scenario where
clients are making updates for 10 minutes and stay online
the whole time. The second benchmark is the offline sce-
nario where the network connection between the clients and
the server is disrupted during the test. The third and last
benchmark is used to measure the total size of the data set
over a longer time period.

5.1 Performance of continuous online updates

The first benchmark represents the continuous online sce-
nario where clients are making updates for 10 minutes and
stay online the whole time. In total, we executed 30 tests
for this benchmark: 6 tests to be executed by each of the
5 technologies. These 6 tests vary in the number of clients
and data size: 8, 16, or 24 clients are performing continuous
concurrent updates on 100 or 1000 objects in a single shared
data set. One such object was shown in Fig. 1 in Section 3
and has 7 attributes. The total depth of the three is four
(root — drawingl — object36 — top). The root has one
child, while drawingl has either 100 or 100 children. And
these children have itself each 7 children. This is the shape
of the tree defined by the application, however, because
drawingl has many children, OWebSync will transparently
add an extra layer in the tree to reduce the network usage.
This increases the total depth of the tree to 5.

Each client edits one object, which leads to two random
writes, the x and y position, on a shared object every second.
We use at most 24 clients, which are editing the same
document concurrently. In comparison, Google Docs, which
is the most popular collaborative editing system today,
supports a maximum of 100 concurrent users according to
Google itself [2]. But in practice, latency starts to increase
significantly when the number of users exceeds 10 [39]. Our
performance results show the same problem for ShareDB,
which uses the same technique. In our performance evalua-
tion, one iteration of a test takes 10 minutes. Before each test,
the database is populated and the initial synchronization is
performed. The first minute is used for warm-up. To ensure
the stability of the test results, all tests are repeated 10 times.

The following performance measurements quantify the
statistical division of the time it takes to synchronize a
single update to all other clients in the case of a continuous
online situation. The synchronization times of the updates
are illustrated in Fig. 5.

Analysis of the results. For the test with 8 clients and
100 objects, all operation-based approaches (ShareDB, Yjs,
and Automerge) synchronize the updates faster than the
state-based approaches (Legion and OWebSync). For these
three operation-based approaches, 99% is below 0.3 seconds.
Legion needs about 1.0 second for synchronizing the 99th
percentile and OWebSync needs 1.3 seconds. The reason
for this is that Legion and OWebSync do not keep track
of which updates have been sent to which client. Hence,
each time the data is synchronized, a few extra round-
trips are required to calculate which updates are needed.

ShareDB, Yjs, and Automerge can just send the operations.
On a faster network, with less latency, both Legion and
OWebSync will be able to synchronize faster than in this test,
since the round-trip time will be less. But even with this high
latency in this benchmark, OWebSync performs within the
guidelines of 1-2 seconds for interactive performance. For
the test with 24 clients and 1000 objects, ShareDB has raised
to 7.7 seconds for the 99th percentile. The server cannot keep
up with transforming the incoming operations. Since the
operations in Yjs and Automerge are commutative and do
not need a transformation, the server does not become a
bottleneck. These tests show that state-based CRDTs, which
are currently only used for background synchronization
between servers, can also be used in interactive groupware.
This improvement is due to the use of Merkle-trees em-
bedded in the data structure, the use of virtual Merkle-tree
levels for large objects, and message batching.

Network trade-off. The trade-off for this scalable, prompt
synchronization, is that OWebSync has a rather large net-
work usage compared to the other tested technologies
(Fig. 6). Only Automerge requires more bandwidth because
it stores the whole history and uses long text-based UUIDs
as client identifiers, compared to just integers in Legion.
The usage of Merkle-trees reduced the network usage of
OWebSync with about a factor 8 in the worst case (1000
objects under a single node in the tree), compared to nor-
mal state-based CRDTs. Introducing extra, virtual, levels in
the Merkle-tree for nodes with many children lowered the
bandwidth with another factor 3. Even in the test with 24
clients and 1000 objects, the used bandwidth is only 360
kbit/s per client. This is much less than the available band-
width, which is on average 27 Mbit/s on a mobile network
in the US [40]. The server consumes about 8.7 Mbit/s, which
is acceptable for a typical data center. The data structure
has an important effect on the network usage. One might
create a tree-structure with few nodes which have many
children. This will make the Merkle-tree less useful since
the metadata of all the children needs to be exchanged to
be able to determine which children are updated. This can
be seen in Fig. 6 by comparing the network usage of the
tests with 100 objects to the tests with 1000 objects. The
other possibility is that there are fewer children per node,
but with an increased depth of the tree. This positively
affects the network usage, as less metadata will need to be
exchanged. However, synchronizing the whole tree will take
more round-trips as there are more levels in the tree.

CPU usage. We show the CPU usage for the experiment
with 24 clients and 1000 objects in Table 1. The average
client-side CPU usage for OWebSync is 9%, which is sim-
ilar to Legion and ShareDB, and about half of Yjs and
Automerge. The server-side CPU usage for OWebSync is
higher, 33%, as it essentially needs to run the same syn-
chronization protocol for every client. It still performs better
than ShareDB, which uses OT and needs to transform all
operations on the server before they are sent to the clients.
The operation-based approach of Yjs and Automerge, and
the delta-state-based approach of Legion, are more efficient,
as the server can keep track of which client needs which
updates. Automerge performs worse than expected, but we
assume that this is because it stores the whole history and
uses long text-based UUIDs as client identifiers.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 9, SEPTEMBER 2021 10

Synchronization time

10 s+ 8 clients E 16 clients E 24 clients ==
5 l
$] I L gf + i
14 E]
= o= =+ l =
L EE FF F +x P £+
' 100 1000 100 1000 100 1000
Objects Objects Objects
ShareDB B Yjs @ Automerge Legion m® OWebSync

Fig. 5. Aggregated boxplots containing the times to synchronize an update to all other clients in the online scenario. Each boxplot contains all 10
iterations for each of the 30 tests in the fully online situation. To compare technologies that have results of the same order of magnitude, as well as

results in different orders of magnitude, we opted for a logarithmic Y-axis.

Network usage
8 clients

500 kbit/s
400
300
200
100

16 clients

2]

24 client;

TUSN NN NNNNANNNANY

100
Objects

@ Automerge ®& Legion Bl OWebSync

100 1000
Objects

100 1000
Objects

ShareDB ¥ Yjs

1000

Fig. 6. Network usage per client for each test in the online scenario.

Interpretation and discussion. For interactive web applica-
tions and groupware, usability guidelines [1], [41] state that
remote response times should be 1 to 2 seconds on average.
3 to 5 seconds is the absolute maximum before users are
annoyed. The user is often leaving the web application after
10 seconds of waiting time. We start from these numbers
to assess the update propagation time between users in a
collaborative interactive online application with continuous
updates. We are interested in the time for a user to receive
an update from another online user. These numbers should
be achieved not only for the average user (the mean syn-
chronization time) but also for the 99th percentile (i.e. most
of the users [15]). The 99th percentile for the synchronization
time of the OWebSync test with 24 clients and 1000 objects
is below 1.5 seconds. ShareDB operates with sub-second
synchronization times when sharing 100 objects between
8 writers. But when the number of objects and writers
increases, the synchronization time raises to 7.7 seconds for
the 99th percentile. This is in line with the observations of
Dang et al. [39] for Google Docs, which also uses OT. The
other technologies stay well below 5 seconds in the online
scenario and can be called interactive.

5.2 Performance in disconnected scenarios

We now present the performance analysis when the network
between the clients and the server is disrupted. In these
tests, we have an analogous test setup. However, during the
10-minute execution, we start dropping all messages after
3 minutes for 1 minute (shown at 2 minutes in the graphs
as the first minute is used as a warm-up). This 1-minute

network disruption will lead to many conflicting operations,
which will automatically be resolved by the middleware.
During the disruption, there will be 1440 offline updates
in the largest experiment with 24 clients. A longer offline
period will not change much for OWebSync since only the
state is kept and the same client moving the same object
twice will result in the same amount of state to be sent.
Operation-based approaches will take longer when the time
increases since they have to send all operations anyway.

We evaluate the time that is needed to achieve full
bidirectional synchronization of all concurrent updates on
all clients during the network disruption. We also evaluate
the time that is needed to restore normal interactive perfor-
mance in the online setting after the disruption.

Analysis of the results. The boxplots of these tests, shown
in Fig. 7, show that OWebSync can synchronize all missed
updates faster than ShareDB, Yjs, Automerge, and Legion.
Note that these boxplots are different from the previous fig-
ure. At the median of these boxplots, only 50% of the missed
updates are synchronized. Only at the upper whisker, most
of the missed updates are fully synchronized. Whiskers
have a maximum of 1.5 times the interquartile range.

Then, each user is fully up-to-date with everything that
was updated during the network disruption. In the large
scale scenario with 24 clients and 1000 updates, the time to
synchronize all missed updates in case of network failure
is 3.5 seconds for the 99th percentile for OWebSync, which
is acceptable for interactive web applications. The other
technologies need more than 5 seconds to only synchronize
half of the missed updates, meaning that users will become
annoyed. The operation-based approaches need several tens
of seconds to synchronize all of the missed updates because
they must replay all missed operations on the clients that
were offline. This is due to their operation-based nature.
OWebSync only needs to merge the new state, which it does
in the same way as if the failure never happened. Legion
could keep up with OWebSync in the online scenario, but
now we see that resynchronization after network disrup-
tions starts to take longer when the scale of the test or the
size of the data set increases.

Timeline analysis of the tests. The timelines in Fig. 8 show
the resynchronization times on the y-axis, without the of-
fline time during the network disruption, for each update

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 9, SEPTEMBER 2021 11

Resynchronization time
100 s 5 8 clients

MR |

-

16 clients 3

77 24 clients
7
Z

—

1.8 & o ERN T
0.1 T T T T T
1000 100 1000 100 1000
Objects Objects Objects
ShareDB B Yjs @ Automerge Legion m® OWebSync

Fig. 7. Boxplots of the time it takes for an update during the failure scenario to be received by all clients. The time before a client notices the network
connection is reestablished is not taken into account. Note that the median here means that only 50% of all missed updates are synchronized to all
clients. Only at the upper whisker, most of the missed updates are synchronized.

Synchronization time

30s
2 Iy
10 T

”'*“‘!‘-
0 m
0

1 2 3 4 5 6 7 8 9min
Timeline of the test

ShareDB == Yjs == Automerge —=Legion — OWebSync

Fig. 8. Mean time to synchronize updates in case of a network disruption
between minute 2 and 3 for the test with 24 clients, 1000 objects.

done at a given moment during the test timeline. This means
that for an update done 20 seconds before the end of the
disruption, and which got synchronized to all other clients
22 seconds later, the resynchronization time is 2 seconds.

In the test with 24 clients and 1000 objects, OWebSync
quickly returns to the same performance as before the
network disruption. Legion needs more time to synchronize
the missed updates, but also quickly returns to the same
performance. The operation-based approaches take much
longer to synchronize missed updates and take tens of
seconds to return to the original performance. ShareDB and
Automerge need more than half a minute to return to the
same interactive performance as before. This means that in
a setting with frequent disconnections, the user will not
be able to regain interactive performance. When coming
back online, those technologies cannot achieve prompt and
interactive synchronization immediately.

5.3 Total size of the data model

The third and last benchmark is used to measure the total
size of the data set over a longer time (2 hours). Every 10
minutes, 5 new client browsers will start making changes.
After those 10 minutes, the browsers are shut down and
replaced by others. After 2 hours, about 60 browsers of
clients are introduced into the system. This benchmark
simulates the eDesigners case study over the course of a
few years. Several employees and external consultants will
have worked on the template using different browsers on
their devices (desktop, laptop, tablet). In the meantime, they
might have cleared their browser cache, used an incognito

Data size
7.5 MB
5
2.5 ;"".'-'-'-'-‘-A-'-'“‘-l-"'-lﬁl-'-"'-I-("-'-‘-I-l-'-l-l-l'
ﬁ-—-lﬂ
0 I—I—I_I T 1
0 1 2hours
Timeline of the test
ShareDB =+=Yjs == Automerge —:=Legion =— OWebSync

Fig. 9. Evolution of the total data size on the server.

session or switched to a new device. This scenario is used to
verify how well the 5 frameworks will perform over time.

All other technologies used in the evaluation use some
form of client identifiers and version numbers to keep track
of changes (e.g. vector clocks in Legion). This means that
the size of the data set will grow over time, especially in
highly dynamic settings like the web. Fig. 9 shows the total
data size on the server over time while several users are
joining and leaving. The size of the data set on the server
remains constant over time when using OWebSync. Other
techniques grow with the number of clients and operations.
In the dynamic setting of the web, keeping track of all clients
with version vectors and client identifiers will eventually
inflate and pollute the metadata. Users can clear the browser
cache, browse incognito or visit the web application on
multiple devices including someone else’s device for one
time. By storing those client identifiers in the data model
on the server, the performance will decrease over time.
Yjs is an exception and stops growing fast in size after a
few minutes. This is because Yjs will garbage collect old
operations after 100 seconds [9]. This operation is not safe
and clients that were offline for a longer time might end up
in an inconsistent state or lose data.

The first two benchmarks are performed on a clean data
set, meaning that the size of the data on the server is still
small. If we would start the tests after e.g. 5 hours of warm-
up, the results for the other technologies would be worse.
We evaluated a worst-case scenario for OWebSync, with
clean data sets for the other frameworks.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 9, SEPTEMBER 2021 12

TABLE 1
Synchronization time and CPU usage for 24 clients and 1000 objects.

Synchronization time [s] CPU [%]
online offline client server
50% 99% 50% 99%
ShareDB 445 7.69 12.67 25.10 10 101
Yijs 0.14 017 2021 109.15 20 10
Automerge 0.14 020 1159 18.90 22 54
Legion 064 1.03 7.61 8.56 9 5
OWebSync 134 149 2.87 3.53 9 33

5.4 Summary

Our evaluation shows that the operation-based approaches
work well in continuous online situations with a limited
number of users. Operational Transformation cannot be
used with many clients as the server eventually becomes
a bottleneck. Operation-based approaches can synchronize
updates faster than state-based approaches like Legion
and OWebSync. However, when network disruptions occur,
these technologies cannot achieve acceptable performance
and need tens of seconds to achieve synchronization. Delta-
state CRDTs, as used in Legion, can recover faster from net-
work disruptions than operation-based approaches, but still
need more than 8 seconds to synchronize missed updates,
which cannot be called interactive anymore. Moreover, the
size of the data set will increase with both the number of
updates and the number of clients. OWebSync can achieve
much better performance in the order of seconds, which is
still acceptable for interactive groupware. In a setting with
frequent offline situations, e.g. for mobile employees, OWeb-
Sync is the most appropriate technology and outperforms
all other frameworks. Over time, OWebSync can continue
to deliver the same interactive performance, as no client
identifiers or version vectors are stored. Table 1 summarizes
the results in seconds of the large scale test with 24 clients
and 1000 objects for the average user (50th percentile) and
most of the users (99th percentile) for both settings.

6 RELATED WORK

The related work consists of three types of work: 1) con-
cepts and techniques such as CRDTs and OT, 2) NoSQL
data systems such as Dynamo and Cassandra, as well as
synchronization frameworks between data centers and 3)
synchronization frameworks for replication to the client.
Concepts and techniques. The concepts and techniques like
OT and CRDTs were discussed in Section 2. Other text-based
versioning systems such as Git [42] are not made to manage
data structures and do not always guarantee valid data
structures after synchronization. Code, XML or JSON can
end up malformed and often require user-level resolution.
We now discuss some other extensions to CRDTs.
Conflict-free Partially Replicated Data Types [43] allow to
replicate only part of a CRDT. This helps with bandwidth
and memory consumption, as well as security and pri-
vacy [44]. OWebSync allows replicating any arbitrary sub-
tree of the whole CRDT tree. Hybrid approaches combining
operation-based and state-based CRDTs are also possible
as demonstrated by Bendy [45]. For data that can tol-
erate staleness, one can make use of state-based CRDTs,

while for data with interactive performance requirements,
operation-based CRDTs can be used. This dynamic decision
is only made between the servers, and not on the clients.
For clients, only operation-based CRDTs are available. A
garbage collection technique can be used to reduce the
memory usage of operation-based CRDTs by defining a join-
protocol for dynamic environments [46]. But this only treats
transient network disruptions where clients will come back
online eventually, which is not necessarily the case for web
clients. Strong Eventually Consistent Replicated Objects
(SECROs) [47] are similar to operation-based CRDTs, but
do not impose restrictions on commutativity of operations.
However, by doing so, they need a global total order and
cannot tolerate network disruptions.

Distributed data systems and NoSQL systems. Based on the
Dynamo paper [15], many other open-source NoSQL sys-
tems have been developed for structured or semi-structured
data, focusing on eventual consistency within or between
data centers. Dynamo uses multi-value registers to main-
tain multiple versions of the data and expects application-
level conflict resolution. Cassandra [48], [49] supports fine-
grained versioning of cells in a wide-column store. It uses
wall-clock timestamps for each row-column cell and adopts
a last-write-wins strategy to merge two cells. CouchDB [50]
and MongoDB [51] focus on semi-structured document
storage, typically in a JSON format. CouchDB offers only
coarse-grained versioning per document and stores multiple
versions of the document. Applications need to resolve
version conflicts manually. It also does not support fine-
grained conflict detection within two documents.

Several commercial database systems allow to use
CRDTs as the underlying data model: e.g. Riak [12],
Akka [52] and Redis [53]. Besides those commercial prod-
ucts, several research projects have emerged. Merkle Search
Trees (MSF) [13] implement a key-value store like Dynamo
using a state-based CRDT and a Merkle-tree. It builds
the Merkle-tree on top of the flat data structure, while
OWebSync will make use of the tree-like structure of the
data to build the Merkle-tree. MSF is targeted to asyn-
chronous background synchronization between backend
servers, and not for interactive groupware with replication
to the clients. Antidote [54] is a research project to develop
a geo-replicated database over world-wide data centers.
It adopts operation-based commutative CRDTs for highly-
available transactions and supports partial replication but
assumes continuous online connections as the default oper-
ational situation for clients. SMAC [55] uses an operation-
based CRDT storage system for state management tasks
for distributed container deployments. DottedDB [56] uses
node-wide dot-based clocks to find changes that need to be
replicated, without the need for explicit tombstones. It does
not support replication to the clients, or offline edits.

Client-tier frameworks for synchronization. Many client-
side frameworks have appeared to enable synchronization
between native clients. Cimbiosys [57] is an application
platform that supports content-based partial replication and
synchronization with arbitrary peers. While it shares some
of the goals of OWebSyng, it is best suited to synchronize
collections of media data (e.g. pictures, movies) and not
for JSON documents with fine-grained conflict resolution.
SwiftCloud [5], [6], [58] is a distributed object database with

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 9, SEPTEMBER 2021 13

fast reads and writes using a causally-consistent client-side
local cache and operation-based CRDTs. Metadata used for
causality in the form of vector clocks are assigned by the
data centers. Hence, the size of the metadata is bound by the
number of data centers, and not by the number of updates
or the number of clients. The cache is limited in size and
the data is only partially available, limiting what data can
be read and updated during offline operation. Because it
uses operation-based CRDTs, it needs a reliable exactly-once
message channel, which is implemented by using a log.

Besides the frameworks for native clients, there are
several JavaScript frameworks made for synchronization
between distributed web clients. Legion [17], [18] is a
framework for extending web applications with peer-to-
peer interactions. It also supports client-server usage and
uses delta-state-based CRDTs for the synchronization. Au-
tomerge [10], [11] is a JavaScript library for data synchro-
nization adopting the operation-based JSON data type of
Kleppman [34]. It uses vector clocks which grow in size
with the number of clients. PouchDB [59] is a client-side
JavaScript library that can replicate data from and to a
CouchDB server. Local data copies are stored in the browser
for offline usage. PouchDB only supports conflict detection
and resolution at the coarse-grained level of a whole docu-
ment. ShareDB [33] is a client-server framework to synchro-
nize JSON documents and adopts OT as synchronization
technique between the different local copies. ShareDB can
thus not be used in extended offline situations. In case of
short network disruptions, it can store the operations on the
data in memory and resend them when the connection is
restored. The offline operations are lost when the browser
session is closed. Yjs [7], [8], [9] is a JavaScript framework
for synchronizing structured data and supports maps, ar-
rays, XML and text documents. All data types also use
operation-based CRDTs for synchronization. Swarm.js [60]
is a JavaScript client library for the Swarm database, based
on operation-based CRDTs with a partially ordered log
for synchronization after offline situations. Swarm.js also
focuses on peer-to-peer architectures like chat applica-
tions and decentralized CDNs, while OWebSync focuses on
client-server line-of-business applications. In contrast with
OWebSync, none of these JavaScript frameworks support all
of the following: fine-grained conflict resolution, interactive
updates when online and fast resynchronization after being
offline, as well as being scalable to tens of concurrently
online clients and hundreds of writers over time.

7 CONCLUSION

This paper presented a web middleware that supports seam-
less synchronization of both online and offline clients that
are concurrently editing a shared data set. Our OWebSync
middleware implements a generic data model, based on
JSON, that combines state-based CRDTs with Merkle-trees.
This allows to quickly find differences in the data set and
synchronize them to other clients. Apart from the regular
CRDT structure and the hashes of the Merkle-tree, no other
metadata needs to be stored. Existing approaches use client
identifiers and version numbers, or even the full history, to
track updates, which will pollute the metadata and decrease
performance over time.

The comparative evaluation shows that the operation-
based approaches cannot achieve acceptable performance
in case of network disruptions and need tens of seconds to
achieve resynchronization. Current state-based approaches
using delta-state-based CRDTs are faster to recover than
the operation-based ones, but cannot achieve prompt resyn-
chronization of missed updates. The state-based approach
with Merkle-trees of OWebSync can achieve better perfor-
mance in the order of seconds for both online updates and
missed offline updates, making it suitable for interactive
web applications and groupware.

REFERENCES

[1] J. Nielsen, Usability Engineering. Nielsen Norman Group,
1993. [Online]. Available: https://www.nngroup.com/books/
usability-engineering /

[2] “Google docs,” https://support.google.com/docs/answer/
2494822, 2018.

[3] N. Preguica, J. M. Marques, M. Shapiro, and M. Letia, “A com-
mutative replicated data type for cooperative editing,” in 2009
29th IEEE International Conference on Distributed Computing Systems,
June 2009, pp. 395-403.

[4] M. Shapiro, N. Preguica, C. Baquero, and M. Zawirski,
“A comprehensive study of convergent and commutative
replicated data types,” Inria — Centre Paris-Rocquencourt ;
INRIA, Research Report RR-7506, Jan. 2011. [Online]. Available:
https:/ /hal.inria.fr/inria-00555588

[5] M. Zawirski, A. Bieniusa, V. Balegas, S. Duarte, C. Baquero,
M. Shapiro, and N. Preguica, “Swiftcloud: Fault-tolerant geo-
replication integrated all the way to the client machine,”
INRIA, Research Report RR-8347, Oct. 2013. [Online]. Available:
https:/ /hal.inria.fr /hal-00870225

[6] N.Preguica, M. Zawirski, A. Bieniusa, S. Duarte, V. Balegas, C. Ba-
quero, and M. Shapiro, “Swiftcloud: Fault-tolerant geo-replication
integrated all the way to the client machine,” in 2014 IEEE 33rd
International Symposium on Reliable Distributed Systems Workshops.
IEEE, 2014, pp. 30-33.

[7] P. Nicolaescu, K. Jahns, M. Derntl, and R. Klamma, “Yjs: A
framework for near real-time p2p shared editing on arbitrary data
types,” in Engineering the Web in the Big Data Era. Cham: Springer
International Publishing, 2015, pp. 675-678.

[8] ——, “Near real-time peer-to-peer shared editing on extensible
data types,” in Proceedings of the 19th International Conference on
Supporting Group Work, ser. GROUP “16. NY, USA: ACM, 2016,
pp- 39-49.

[91 “Yjs,” https:/ /github.com/y-js/yjs, 2014.

[10] M. Kleppman and A. R. Beresford. (2018) Automerge: Real-time
data sync between edge devices. [Online]. Available: http:
/ /martin.kleppmann.com/papers/automerge-mobiuk18.pdf

[11] “Automerge,” https:/ /github.com/automerge/automerge, 2017.

[12] “Riak,” http://docs.basho.com/riak/kv, 2010.

[13] A. Auvolat and F Taiani, “Merkle Search Trees: Efficient
State-Based CRDTs in Open Networks,” in SRDS 2019
- 38th IEEE International Symposium on Reliable Distributed
Systems. Lyon, France: IEEE, Oct. 2019. [Online]. Available:
https:/ /hal.inria.fr /hal-02303490

[14] R. Merkle, “Method of providing digital signatures,” 1982, uS
patent 4309569. The Board Of Trustees Of The Leland Stanford
Junior University.

[15] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Laksh-
man, A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels,
“Dynamo: amazon’s highly available key-value store,” in ACM
SIGOPS operating systems review, vol. 41(6). NY, USA: ACM, 2007,
pp- 205-220.

[16] A.van der Linde, J. a. Leitdo, and N. Preguica, “A-crdts: Making
d-crdts delta-based,” in Proceedings of the 2Nd Workshop on the
Principles and Practice of Consistency for Distributed Data, ser. PaPoC
"16. NY, USA: ACM, 2016, pp. 12:1-12:4.

[17] A.van der Linde, P. Fouto, J. a. Leitdo, N. Preguica, S. Castifieira,
and A. Bieniusa, “Legion: Enriching internet services with peer-to-
peer interactions,” in Proceedings of the 26th International Conference
on World Wide Web, ser. WWW ’17. International World Wide Web
Conferences Steering Committee, 2017, pp. 283-292.

https://www.nngroup.com/books/usability-engineering/
https://www.nngroup.com/books/usability-engineering/
https://support.google.com/docs/answer/2494822
https://support.google.com/docs/answer/2494822
https://hal.inria.fr/inria-00555588
https://hal.inria.fr/hal-00870225
https://github.com/y-js/yjs
http://martin.kleppmann.com/papers/automerge-mobiuk18.pdf
http://martin.kleppmann.com/papers/automerge-mobiuk18.pdf
https://github.com/automerge/automerge
http://docs.basho.com/riak/kv
https://hal.inria.fr/hal-02303490

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 9, SEPTEMBER 2021 14

(18]
[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]
[29]

(30]

(31]

(32]

(33]
(34]

[35]
[36]
(37]
(38]

[39]

[40]
[41]

[42]
[43]

(44]

[45]

“Legion,” https:/ /github.com/albertlinde/Legion, 2016.

T. Bray, “The javascript object notation (json) data interchange
format,” Internet Requests for Comments, IETF, RFC 7158, 2014.
[Online]. Available: https:/ /www.rfc-editor.org/rfc/rfc7158.txt
C. A. Ellis and S. J. Gibbs, “Concurrency control in groupware
systems,” SIGMOD Rec., vol. 18, no. 2, pp. 399407, Jun. 1989.

S. Kumawat and A. Khunteta, “A survey on operational transfor-
mation algorithms: Challenges, issues and achievements,” Interna-
tional Journal of Computer Applications, vol. 3, pp. 30-38, Jul. 2010.
M. Shapiro, N. Perguica, C. Baquero, and M. Zawirski, “Conflict-
free replicated data types,” in SSS 2011 - 13th International Sym-
posium Stabilization, Safety, and Security of Distributed Systems, ser.
Lecture Notes in Computer Science, X. Défago, F. Petit, and
V. Villain, Eds., vol. 6976. Berlin, Heidelberg: Springer Berlin
Heidelberg, Oct. 2011, pp. 386—400.

P. S. Almeida, A. Shoker, and C. Baquero, “Efficient state-based
crdts by delta-mutation,” in Networked Systems. Cham: Springer
International Publishing, 2015, pp. 62-76.

——, “Delta state replicated data types,” Journal of Parallel and
Distributed Computing, vol. 111, pp. 162 — 173, 2018.

“Delta crdts,” https:/ /github.com/peer-base/js-delta-crdts, 2018.
V. Enes, C. Baquero, P. S. Almeida, and A. Shoker, “Join decompo-
sitions for efficient synchronization of crdts after a network parti-
tion: Work in progress report,” in First Workshop on Programming
Models and Languages for Distributed Computing, ser. PMLDC ’16.
NY, USA: ACM, 2016, pp. 6:1-6:3.

V. Enes, P. S. Almeida, C. Baquero, and]. Leitdo, “Efficient syn-
chronization of state-based crdts,” in 2019 IEEE 35th International
Conference on Data Engineering (ICDE), April 2019, pp. 148-159.
M. Shapiro, Replicated Data Types. NY: Springer, 2017, pp. 1-5.
H.-G. Roh, M. Jeon,] .-S. Kim, and J. Lee, “Replicated abstract data
types: Building blocks for collaborative applications,” Journal of
Parallel and Distributed Computing, vol. 71, no. 3, pp. 354-368, 2011.
I. Hickson, “The websocket api, w3c candidate recommendation,”
Tech. Rep., 2012. [Online]. Available: https://www.w3.org/TR/
2012 /CR-websockets-20120920/

P. Leach, M. Mealling, and R. Salz, “A universally unique identifier
(uuid) urn namespace,” Internet Requests for Comments, RFC
4122, 2005. [Online]. Available: https://www.rfc-editor.org/rfc/
rfc4122.txt

R. Rivest, “The md5 message-digest algorithm,” Internet
Requests for Comments, RFC 1321, 1992. [Online]. Available:
https:/ /www.rfc-editor.org/rfc/rfc1321.txt

“Sharedb,” https:/ /github.com/share/sharedb, 2013.

M. Kleppmann and A. R. Beresford, “A conflict-free replicated json
datatype,” IEEE Transactions on Parallel and Distributed Systems,
vol. 28, no. 10, pp. 2733-2746, 2017.

“Fabric.js,” https://github.com/fabricjs/fabric.js, 2011.

“Azure,” https:/ /azure.microsoft.com, 2019.

W. Almesberger, “Linux network traffic control — implementation
overview,” EPFL, Tech. Rep., 1999. [Online]. Available: https:
//www.almesberger.net/cv/papers/tcio8.pdf

“opensignal.com,” https://www.opensignal.com/reports/2019/
01/usa/mobile-network-experience, 2019.

Q.-V. Dang and C.-L. Ignat, “Performance of real-time collabora-
tive editors at large scale: User perspective,” in Internet of People
Workshop, 2016 IFIP Networking Conference, ser. Proceedings of 2016
IFIP Networking Conference, Networking 2016 and Workshops.
Vienna, Austria: IFIP, May 2016, pp. 548-553.

“Speedtest.net,” http:/ /www.speedtest.net/reports/
united-states/2018/Mobile/, 2018.

J. Nielsen. (2010) Website response times. [Online]. Available:
https://www.nngroup.com/articles / website-response-times /
“Git,” https:/ / git-scm.com/, 2005.

I. Briquemont, M. Bravo, Z. Li, and P. Van Roy, “Conflict-free
partially replicated data types,” in 2015 IEEE 7th International
Conference on Cloud Computing Technology and Science (CloudCom).
IEEE, 2015, pp. 282-289.

S. A. Kollmann, M. Kleppmann, and A. R. Beresford, “Snapdoc:
Authenticated snapshots with history privacy in peer-to-peer col-
laborative editing,” Proceedings on Privacy Enhancing Technologies,
vol. 2019, no. 3, pp. 210 — 232, 2019.

C. Bartolomeu, M. Bravo, and L. Rodrigues, “Dynamic adaptation
of geo-replicated crdts,” in Proceedings of the 31st Annual ACM
Symposium on Applied Computing, ser. SAC "16. NY, USA: ACM,
2016, pp. 514-521.

[46]

[47]

(48]
[49]

[50]
[51]
[52]
(53]

[54]
[55]

[56]

[57]

(58]

[59]
[60]

J. Bauwens and E. Gonzalez Boix, “Memory efficient crdts in
dynamic environments,” in Proceedings of the 11th ACM SIGPLAN
International Workshop on Virtual Machines and Intermediate Lan-
guages, ser. VMIL 2019. NY, USA: ACM, 2019, pp. 48-57.

K. De Porre, F. Myter, C. De Troyer, C. Scholliers, W. De Meuter,
and E. Gonzalez Boix, “Putting order in strong eventual consis-
tency,” in Distributed Applications and Interoperable Systems. Cham:
Springer International Publishing, 2019, pp. 36-56.

“Apache cassandra,” https://cassandra.apache.org, 2009.

A. Lakshman and P. Malik, “Cassandra: a decentralized structured
storage system,” ACM SIGOPS Operating Systems Review, vol. 44,
no. 2, pp. 3540, 2010.

“Couchdb,” https:/ /couchdb.apache.org, 2005.

“Mongodb,” https:/ /www.mongodb.com/, 2009.

“Akka,” https:/ /doc.akka.io/docs/akka/current/
distributed-data.html, 2018.

C. Biyikoglu, “Under the hood: Redis crdts (conflict-free replicated
data types),” Redis Labs, White paper, 2017. [Online]. Available:
https:/ /redislabs.com/docs/under-the-hood/

“Antidote,” http:/ /syncfree.github.io/antidote, 2014.

J. Eberhardt, D. Ernst, and D. Bermbach, “Smac: State management
for geo-distributed containers,” Technische Universitaet Berlin,
Tech. Rep., 2016.

R. J. T. Gongalves, P. S. Almeida, C. Baquero, and V. Fonte,
“Dotteddb: Anti-entropy without merkle trees, deletes without
tombstones,” in 2017 IEEE 36th Symposium on Reliable Distributed
Systems (SRDS). 1EEE, 2017, pp. 194-203.

V. Ramasubramanian, T. L. Rodeheffer, D. B. Terry, M. Walraed-
Sullivan, T. Wobber, C. C. Marshall, and A. Vahdat, “Cimbiosys:
A platform for content-based partial replication,” in Proceedings
of the 6th USENIX symposium on Networked systems design and
implementation, 2009, pp. 261-276.

M. Zawirski, N. Preguica, S. Duarte, A. Bieniusa, V. Balegas, and
M. Shapiro, “Write fast, read in the past: Causal consistency for
client-side applications,” in Proceedings of the 16th Annual Middle-
ware Conference, ser. Middleware '15. ACM, 2015, pp. 75-87.
“Pouchdb,” https:/ /pouchdb.com, 2013.

“Swarm.js,” https:/ /github.com/gritzko/swarm, 2013.

Kristof Jannes is a Ph.D. candidate in the De-
partment of Computer Science at KU Leuven in
Belgium, and a member of the research group
imec-DistriNet. His research activities are under
the supervision of Prof. Dr. Wouter Joosen and
Dr. Bert Lagaisse. He received his Master’s de-
gree in computer science from the KU Leuven
in 2018. His main research interests are in the
area of data synchronization, consensus and
decentralization.

Bert Lagaisse is a senior industrial research
manager at the imec-DistriNet research group
in which he manages a portfolio of applied
research projects on cloud technologies, dis-
tributed data management and security middle-
ware in close collaboration with industrial part-
ners. He has a strong interest in distributed sys-
tems, in enterprise middleware, cloud platforms
and security services. He obtained his MSc in
computer science at KU Leuven in 2003 and
finished his Ph.D. in the same domain in 2009.

Wouter Joosen is full professor at the Depart-
ment of Computer Science of the KU Leuven in
Belgium, where he teaches courses on software
architecture and component-based software en-
gineering, distributed systems and the engineer-
ing of secure service platforms. His research
interests are in aspect-oriented software devel-
opment, focusing on software architecture and
middleware, and in security aspects of software,
including security in component frameworks and
security architectures.

https://github.com/albertlinde/Legion
https://www.rfc-editor.org/rfc/rfc7158.txt
https://github.com/peer-base/js-delta-crdts
https://www.w3.org/TR/2012/CR-websockets-20120920/
https://www.w3.org/TR/2012/CR-websockets-20120920/
https://www.rfc-editor.org/rfc/rfc4122.txt
https://www.rfc-editor.org/rfc/rfc4122.txt
https://www.rfc-editor.org/rfc/rfc1321.txt
https://github.com/share/sharedb
https://github.com/fabricjs/fabric.js
https://azure.microsoft.com
https://www.almesberger.net/cv/papers/tcio8.pdf
https://www.almesberger.net/cv/papers/tcio8.pdf
https://www.opensignal.com/reports/2019/01/usa/mobile-network-experience
https://www.opensignal.com/reports/2019/01/usa/mobile-network-experience
http://www.speedtest.net/reports/united-states/2018/Mobile/
http://www.speedtest.net/reports/united-states/2018/Mobile/
https://www.nngroup.com/articles/website-response-times/
https://git-scm.com/
https://cassandra.apache.org
https://couchdb.apache.org
https://www.mongodb.com/
https://doc.akka.io/docs/akka/current/distributed-data.html
https://doc.akka.io/docs/akka/current/distributed-data.html
https://redislabs.com/docs/under-the-hood/
http://syncfree.github.io/antidote
https://pouchdb.com
https://github.com/gritzko/swarm

	1 Introduction
	2 Motivation and Background
	2.1 Case studies
	2.1.1 eWorkforce
	2.1.2 eDesigners

	2.2 Background
	2.2.1 Operational Transformation
	2.2.2 Conflict-free Replicated Data Types

	2.3 Principles
	2.3.1 LWWRegister
	2.3.2 ORSet
	2.3.3 Merkle-trees

	3 The OWebSync Data Model
	3.1 Approach
	3.2 Observed-Removed Map
	3.3 Considerations and discussion

	4 Architecture and Synchronization
	4.1 Overall architecture
	4.2 Client-tier middleware and API
	4.3 Synchronization protocol
	4.4 Performance optimization tactics
	4.4.1 Virtual Merkle-tree levels
	4.4.2 Message batching

	5 Performance evaluation
	5.1 Performance of continuous online updates
	5.2 Performance in disconnected scenarios
	5.3 Total size of the data model
	5.4 Summary

	6 Related work
	7 Conclusion
	References
	Biographies
	Kristof Jannes
	Bert Lagaisse
	Wouter Joosen

